تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,157 |
تعداد دریافت فایل اصل مقاله | 54,843,825 |
ارائه روشی جدید برای کشف نزدیکترین همسایگی در سیستمهای توصیهگر مبتنی بر فیلترینگ مشارکتی | ||
سامانههای پردازشی و ارتباطی چندرسانهای هوشمند | ||
دوره 1، شماره 1، مهر 1399، صفحه 55-64 اصل مقاله (782.25 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
مهدی بازرگانی* 1؛ زینب همایونپور2 | ||
1استادیار دانشگاه آزاد اسلامی واحد زنجان | ||
2گروه مهندسی کامپیوتر، دانشگاه آزاد اسلامی واحد زنجان، زنجان، ایران | ||
چکیده | ||
سیستمهای توصیهگر با تحلیل و بررسی دادههای متعلق به کاربران، یک سری آیتمهای خاص را برمبنای علایق به کاربران پیشنهاد میکنند. هدف از آنالیز دادههای مربوط به کاربران، استخراج الگوهای هر کاربر به منظور پیشبینی آیتمها میباشد. یکی از مهمترین روشها در سیستمهای توصیهگر، روش فیلترینگ مشارکتی است. در سیستمهای توصیهگر مبتنی بر فیلترینگ مشارکتی از معیارهای شباهت جهت کشف کردن کاربران مشابه با کاربر جدید برای ارائه پیشنهاد استفاده میشود. از چالشهای سیستمهای توصیهگر مبتنی بر فیلترینگ مشارکتی میتوان به فاکتورهای شباهت و تشخیص همسایگی اشاره کرد. در این مقاله از روش نزدیکترین همسایه به منظور تشخیص همسایگان مشابه به کاربر جدید برمبنای فاصله استفاده میکنیم. مدل پیشنهادی که برگرفته از روش کاربر-آیتم است، امتیاز اقلام برمبنای فاصله محاسبه میشود و نزدیکترین فاصله به منظور تشابه انتخاب میشود. در مدل پیشنهادی، تشخیص کاربران مشابه براساس ماتریس کاربر-آیتم توسط فاصله اقلیدسی انجام میشود. آزمایشات مدل پیشنهادی برروی مجموعه داده Movielens که شامل ۱۶۸۲ آیتم است انجام شده است. برای ارزیابی از معیارهای دقت، فراخوانی، F1، میانگین خطای مطلق و میانگین خطای مربعات ریشه استفاده شده است. میانگین خطای مطلق در مدل پیشنهادی در مقایسه با شباهت پیرسون و کسینوسی کمتر است و مقدار آن برابر با 0.7315 میباشد. در نتیجه دقت مدل پیشنهادی در تشخیص تشابه و پیشبینی بیشتر است. | ||
کلیدواژهها | ||
سیستمهای توصیهگر؛ فیلترینگ مشارکتی؛ نزدیکترین همسایه؛ میانگین خطای مطلق | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 287 تعداد دریافت فایل اصل مقاله: 224 |