تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,623 |
تعداد مشاهده مقاله | 78,416,273 |
تعداد دریافت فایل اصل مقاله | 55,444,815 |
Advanced Refinements of Numerical Radius Inequalities | ||
International Journal of Mathematical Modelling & Computations | ||
مقاله 1، دوره 11، 4 (Fall) - شماره پیاپی 44، اسفند 2021 اصل مقاله (88.6 K) | ||
نوع مقاله: Full Length Article | ||
شناسه دیجیتال (DOI): 10.30495/ijm2c.2021.684828 | ||
نویسندگان | ||
Farzaneh Pouladi Najafabadi* ؛ Hamid Reza Moradi | ||
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran | ||
چکیده | ||
By taking into account that the computation of the numerical radius is an optimization problem, we prove, in this paper, several refinements of the numerical radius inequalities for Hilbert space operators. It is shown, among other inequalities, that if A is a bounded linear operator on a complex Hilbert space, then ω(A)≤½√(|| |A|2+|A*|2||+|| |A| |A*|+|A*| |A| ||), where ω(A), ||A||, and |A| are the numerical radius, the usual operator norm, and the absolute value of A, respectively. This inequality provides a refinement of an earlier numerical radius inequality due to Kittaneh, namely, ω(A)≤½(||A||+||A2||)½. Some related inequalities are also discussed. | ||
کلیدواژهها | ||
Numerical radius؛ Operator norm؛ Inequality؛ Positive operator | ||
آمار تعداد مشاهده مقاله: 340 تعداد دریافت فایل اصل مقاله: 325 |