- Polash M.A.S., Sakil M.A., Hossain M.A., 2019. Plants responses and their physiological and biochemical defense mechanisms against salinity: a review. The Journal of the Society for Tropical Plant Research. 6(2), 250-274. doi: 10.22271/tpr.2019.v6.i2.035
- Kader M.A., Lindberg S., 2010. Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signaling and Behavior. 5(3), 233-238. doi: 10.4161/psb.5.3.10740
- Pravina P., Sayaji D., Avinash M., 2013. Calcium and its role in human body. International Journal of Research in Pharmaceutical and Biomedical Sciences. 4(2), 659-668.
- White P.J., Broadley M.R., 2003. Calcium in plants. Annals of Botany. 92(4), 487-511. https://doi .org/10.1093/aob/mcg164
- Hadi M.R., Karimi N., 2012. The role of calcium in plants salt tolerance. Journal of Plants' Nutrition. 35(13), 2037-2054. https://doi.org/10.1080/01904167.2012.717158
- Ahmad P., Abd_Allah E.F., Alyemeni M.N., Wijaya L., Alam P., Bhardwaj R., Siddique K.H.M., 2018. Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate–glutathione cycle and secondary metabolites. Scientific Reports. 8, 13515. https:// doi.org/10. 1038/s41598-018-31917-1
- Manishankar P., Wang N., Köster P., Alatar A.A., Kudla J., 2018. Calcium signaling during salt stress and in the regulation of ion homeostasis, Journal of Experimental Botany. 69(17), 4215-4226.
- Parihar P., Singh S., Singh R., Singh V.P., Prasad S.M., 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research. 22(6), 4056-4075. doi: 10.1007/s11356-014-3739-1
- Gupta B., Huang B., 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics. 2014(1), 1-18.
- Cha-um S., Singh H.P., Samphumphuang T., Kirdmanee C., 2012. Calcium-alleviated salt tolerance in indica rice (Oryza sativa L. spp. indica): physiological and morphological changes. Australian Journal of Crop Science. 6(1), 176-182. https:// search.informit.com. au/ documentSummary; dn=054025225882532;res=IELHSS
- Acosta-Motos J.R., Ortuño M.F., Bernal-Vicente A., Diaz-Vivancos P., Sanchez-Blanco M.J., Hernandez J.A., 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy. 7(1), 1-38. https://doi .org/ 10.3390/ agronomy7010018
- Nxele X., Klein A., Ndimba B.K., 2017. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany. 108, 261-266. https:// doi.org/10.1016 /j.sajb.2016.11.003
- Parvaiz A., Satyawati S., 2008. Salt stress and phyto-biochemical responses of plants – a review. Plant Soil and Environment. 54(3), 89-99.
- Suprasanna P., Nikalje G.C., Rai A.N., 2016. Osmolyte Accumulation and Implications in Plant Abiotic Stress Tolerance. In: Iqbal N., Nazar R., A. Khan N. (eds) Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2616-1_1
- Alhasnawi A.N., 2019. Role of proline in plant stress tolerance: a mini review. Research on Crops. 20(1), 223-229. doi: 10.31830/2348-7542.2019.032
- Amuthavalli P., Anbu D., Sivasankaramoorthy S., 2012. Effect of calcium chloride on growth and biochemical constituents of cotton (Gossypium hirsutum L.) under salt stress. International Journal of Research in Botany. 2(3), 9-12.
- Zhou G., Ma B.L., 2012. Calcium addition affects germination and early seedling growth of sweet sorghum under saline conditions. Agricultural Science and Technology. 13(12), 2538-2543. http:// eprints.icrisat. ac.in/id/eprint/9831
- McGoverin C.M., Snyders F., Muller N., Botes W., Fox G., Manley M., 2011. A review of triticale uses and the effect of growth environment on grain quality. Journal of the Science of Food and Agriculture. 91(7), 1155-1165. doi: 10.1002/jsfa.4338
- Mergoum M., Sapkota S., ElDoliefy A.E.A., Naraghi S.M., Pirseyedi S., Alamri M.S., AbuHammad W., 2019. Triticale (x Triticosecale Wittmack) Breeding. In: Al-Khayri J, Jain S, Johnson DV (Eds). Advances in Plant Breeding Strategies: Cereals. Springer, Cham. doi: 10.1007/978-3-030-23108-8
- Langó B., Bóna L., Ács E., Tömösközi S., 2017. Nutritional features of triticale as affected by genotype, crop year, and location. Acta Alimentaria. 46(2), 238-245. https://doi.org/10.1556/066.2017.46.2.14
- Chen H., Chen Z., Fu Y., Liu J., Lin S., Zhang Q., Liu Y., Wu D., Lin D., Han G., Wang L., Qin W., 2019. Structure, antioxidant, and hypoglycemic activities of arabinoxylans extracted by multiple methods from triticale. Antioxidants. 8(12), 584. doi: 10.3390/antiox8120584
- Deng C., Zhang Z., Yan G., Wang F., Zhao L., Liu N., Abudurezike A., Li Y., Wang W., Shi S., 2020. Salt-responsive transcriptome analysis of triticale reveals candidate genes involved in the key metabolic pathway in response to salt stress. Scientific Reports. 10, 1-9. https://doi.org/10.1038/s41598-020-77686-8
- Lichtenthaler H.K., 1987. Chlorophylls and carotenoids; pigments of photosynthetic biomembranes. In: Colowick SP, Kaplan NO (eds). Methods in Enzymology, Academic Press, San Diego, New York. 148, 350-382.
- Bates L.S., Waldren R.P., Teare I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39(1), 205-207. https://doi.org/10. 1007/BF00018060
- Grieve C.M., Grattan, S.R., 1983. Rapid assayfor determination of water soluble quaternary ammonium compounds. Plant and Soil. 70, 303-307. https://doi. org/10.1007/BF02374789
- Kochert G., 1978. Carbohydrate determination by the phenol-sulfuric acid method. In: Hellebust JA, Craigie JS [eds.], Handbook of Phycological Methods: Physiological and Biochemical Methods. 95-97. Cambridge University Press, Cambridge.
- Premachandra G.S., Saneoka H., Ogata S., 1990. Cell membrane stability, an indicator of drought tolerance as affected by applied nitrogen in soybean. Journal of agricultural science. (Cambridge, Eng.). 115, 63-66.
- Parida A.K., Das A.B., 2005. Salt tolerance and salinity effects on plants. a review. Ecotoxicology and Environmental Safety. 60(3), 324-349. doi: 10.1016/j.ecoenv.2004.06.010
- Parvin K., Ahamed K.U., Islam M.M., Haque M.N., 2015. Response of tomato plant under salt stress: role of exogenous calcium. Journal of Plant Sciences. 10(6), 222-233. doi: 10.3923/jps.2015.222.233
- Ahmad P., Abd Allah E.F., Alyemeni M.N., Wijaya L., Alam P., Bhardwaj R., Siddique K.H.M., 2018. Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate-glutathione cycle and secondary metabolites. Sci Rep. 8(1), 13515. doi: 10.1038/s41598-018-31917-1
- Tanveer K., Gilani S., Hussain Z., Ishaq R., Adeel M., Ilyas N., 2020. Effect of salt stress on tomato plant and the role of calcium. Journal of Plant Nutrition. 43(1), 28-35. https://doi.org/10.1080/01904167.2019.1659324
- Jahani S., Lahouti M., Jahani M., 2014. Investigation Na+-Ca2+ interaction on biomass and enzymes activity of peroxidase and polyphenol oxidase in leaf of barley (Hordeum vulgare L.). Crop Physiology Journal. 5(20), 15-24. http://cpj.iauahvaz.ac.ir/article-1-186-en.html
- Shariat Jafari M.H., Kafi M., Astaraie A.R., 2009. Interactive effects of NaCl induced salinity, calcium and potassium on physiomorphological traits of sorghum (Sorghum bicolor L.). Pakistan Journal of Botany. 41(6), 3053-3063.
- Sivasankaramoorthy S., 2013. Effect of supplementary calcium enhances plant growth, photosynthetic pigments and uptake of nutrient in Oryza sativa L. under NaCl stress. International Journal of Chemical and Life Sciences. 2(7), 1189-1192.
- Elkelish A.A., Alnusaire T.S., Soliman M.H., Gowayed S., Senousy H.H., Fahad S., 2019. Calcium availability regulates antioxidant system, physio-biochemical activities and alleviates salinity stress mediated oxidative damage in soybean seedlings. Journal of Applied Botany and Food Quality. 92, 258-266. doi: 10.5073/JABFQ.2019.092.036
- Cramer G.R., 2002. Sodium-calcium interactions under salinity stress. Salinity: Environment - Plants - Molecules. Chapter 10, 205-227. doi: 10.1007/0-306-48155-3_10
- Yücel C.N., Heybet E.H., 2016. Salicylic acid and calcium treatments improves wheat vigor, lipids and phenolics under high salinity. Acta Chimica Slovenica. 63(4), 738-746. doi: 10.17344/acsi.2016.2449
- Yousuf P.Y., Ahmad A., Hemant Ganie A.H., Aref I.M., Iqbal M., 2015. Potassium and calcium application ameliorates growth and oxidative homeostasis in salt-stressed Indian mustard (Brassica juncea) plants. Pakistan Journal of Botany. 47(5), 1629-1639.
- Mashela P.W., Aluvilu A., Pofu K.M., 2012. Influence of sodium chloride with and without calcium chloride on growth and productivity of chilli pepper. International Journal of AgriScience. 2(11), 1001-1008.
- Tabatabaeian J., 2014. Effect of calcium nutrition on reducing the effects of salinity on tomato plant. American Journal of Plant Nutrition and Fertilization Technology. 4(1), 11-17. doi: 10.3923/ajpnft.2014.11.17
- Tahjib-Ul-Arif M., Roy P.R., Al Mamun Sohag A., Afrin S., Rady M.M., Afzal Hossain M., 2018. Exogenous calcium supplementation improves salinity tolerance in BRRI Dhan28; a salt-susceptible high-yielding Oryza sativa cultivar. Journal of Crop Science and Biotechnology. 21, 383-394. https://doi.org/10.1007/s12892-018-0098-0
- Steduto P., Albrizio R., Giorio P., Sorrentino G., 2000. Gas-exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity. Environmental and Experimental Botany. 44(3), 243-255. doi: 10.1016/s0098-8472(00)00071-x
- Gunes A., Inal A., Alpaslan M., Eraslan F., Bagci E.G., Cicek N., 2007. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology. 164(6), 728-736. doi: 10.1016/j.jplph.2005.12.009.
- Xu D., Wang W., Gao T., Fang X., Gao X., Li J., Bu H., Mu J., 2017. Calcium alleviates decreases in photosynthesis under salt stress by enhancing antioxidant metabolism and adjusting solute accumulation in Calligonum mongolicum. Conservation Physiology, 5(1), cox060, https://doi.org/10.1093/conphys/cox060
- Ashraf M., Foolad M., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany. 59(2), 206-216. doi: 10.1016/j.envexpbot.2005.12.006
- Hayat S., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Ahmad A., 2012. Role of proline under changing environments: a review. Plant signaling & behavior. 7(11), 1456-1466. doi: 10.4161/psb.21949
- Jaleel C.A., Manivannan P., Sankar B., Kishorekumar A., Panneerselvam R., 2007. Calcium chloride effects on salinity-induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus. Comptes Rendus Biologies. 330(9), 674-683. doi: 10.1016/j.crvi.2007.07.002
- Rahman A., Nahar K., Hasanuzzaman M., Fujita M., 2016. Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Frontiers in Plant Science. 7, 609. https://doi.org/10.3389/fpls.2016.00609
- Manivannan P., Jaleel C.A., Sankar B., Somasundaram R., Murali P.V., Sridharan R., Panneerselvam R., 2007. Salt stress mitigation by calcium chloride in Vigna radiata L. Wilczek. Acta Biologica Cracoviensia Series Botanica. 49(2), 105-109.
- Girija C., Smith B.N., Swamy P.M., 2002. Interactive effects of sodium chloride and calcium chloride on the accumulation of proline and glycine betaine in peanut (Arachis hypogaea L.). Environmental and Exprimental Botany. 47(1), 1-10. https://doi.org/10.1016/S0098-8472(01)00096-X
- El-Samad H.M.A., Barakat N.A.M., 2013. The physiological mechanisms of calcium chloride application on broad bean plants grown under salinity stress. Journal of Ecology and the Natural Environment. 5(12), 371-377. doi: 10.5897/JENE10.089
- Giri J., 2011. Glycine betaine and abiotic stress tolerance in plants. Plant Signaling & Behavior. 6(11), 1746-1751. doi: 10.4161/psb.6.11.17801
- Singh M., Kumar J., Singh S., Singh V.P., Prasad S.M., 2016. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in Environmental Science and Bio/Technology. 14(3), 407-426.
- Umar J., Aliyu A., Shehu K., Abubakar L., 2018. Influence of salt stress on proline and glycine betaine accumulation in tomato (Solanum lycopersicum L.). Journal of Horticulture and Plant Research. 1, 19-25. doi: 10.18052/www.scipress.com/JHPR.1.19
- Hisao T., 1973. Plant responses to water stress. Annual Review of Plant Physiology. 24, 519-570.
- Amirjani M.R., 2011. Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. International Journal of Botany. 7(1), 73-81. doi: 10.3923/ijb.2011.73.81
- Silva J.V., Lacerda C.F., Costa P.H.A., Filho J.E., Enéas-Filho G., Enéas G.F., Prisco J.T., 2003. Physiological responses of NaCl stressed cowpea plants grown in nutrient solution supplemented with CaCl2. Brazilian Journal of Plant Physiology. 15(2), 99-105. doi: 10.1590/S1677-04202003000200005
- Tuna A.L., Kaya C., Ashraf M., Altunlu H., Yokas I., Yagmur B., 2007. The Effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environmental and Experimental Botany. 59(2), 173-178. doi: 10.1016/j.envexpbot.2005.12.007
- Larbi A., Kchaou H., Gaaliche B., Gargouri K., Boulal H., Morales F., 2020. Supplementary potassium and calcium improves salt tolerance in olive plants. Scientia Horticulturae. 260, 1-10. doi: 10.1016/j. scienta. 2019.108912
|