- Acosta, I., Navarro, J., Sendra, J.J. (2013a). “Daylighting design with lightscoop skylights: Towards an optimization of shape under overcast sky conditions.” Energy Build. 60, 232–8.
- Acosta, I., Navarro, J., Sendra, J.J. (2013b). “Towards an analysis of the performance of monitor skylights under overcast sky conditions.” Energy Build. 64, 10–16.
- Acosta, I., Navarro, J., Sendra, J.J. (2015). “Towards an analysis of the performance of monitor skylights under overcast sky conditions.” Energy Build. 88, 248–61. doi: 10.1016/j.enbuild.2014.12.011.
- Acosta, I., Navarro, J., Sendra, J.J., Esquivias, P. (2012). “Daylighting design with lightscoop skylights: Towards an optimization of proportion and spacing under overcast sky conditions.” Energy Build. 49, 394–401. doi:10.1016/j.enbuild.2012.02.038.
- Al-Obaidi, K.M., Ismail, M., Rahman, A.M.A. (2014). “A study of the impact of environ-mental loads that penetrate a passive skylight roofing system in Malaysian buildings.” Front. Archit. Res. 178–191.
- Al-Obaidi, K.M., Ismail, M.A., Munaaim, M.A.C., Abdul Rahman, A.M. (2017). “Designing an integrated daylighting system for deep-plan spaces in Malaysian low-rise buildings.” Sol Energy. 149, 85–101. doi:10.1016/j.solener.2017.04.001.
- Alraddadi, T.A. (2004). “The effect of the stepped section atrium on daylighting performance.” Archit Sci Rev. 47, 303–10. doi:10.1080/00038628.2000.9697536.
- Al-Turki, I., Schiler, M. (1997). “Predicting natural light in atria and adjacent spaces using physical models.” Sol Energy. 59, 241-245.
- Asdrubali, F. (2003). “Daylighting performance of sawtooth roofs of industrial buildings.” Light Res Technol. 35, 343–58. doi:10.1191/1365782803li094oa.
- Baker, N., Fanchiottik, A., Steemers, K. (1993). Daylighting in architecture, A European Reference Book. London: James & James. 1–6.
- Boubekri, M. (1995). “The effect of the cover and reflective properties of a four-sided atrium on the behaviour of light.” Archit Sci Rev. 38, 3–8.
- Boubekri, M., Anninos, W. (1995). “Skylight wells: A finite- element approach to analysis of efficiency.” Light Res Technol. 27, 153_159.
- Bugeat, A., Beckers, B., Fernandez, E. (2020). “Improving the daylighting performance of residential light wells by reflecting and redirecting approaches. ” Sol Energy. 207, 1434–1444.
- Cabeza-Lainez, J., Almodovar-Melendo, J.M., Dominguez, I. (2019). “Daylight and architectural simulation of the Egebjerg school (Denmark): Sustainable features of a new type of skylight”. Sustainability.
- Calcagni, B., Paroncini, M. (2004). “Daylight factor prediction in atria building designs.” Sol Energy. 76, 669–82.
- Cantin, F., Dubois, M. (2011). “Daylighting metrics based on illuminance, distribution glare and directivity.” Light Res Technol. 43(3), 291–307.
- Carlucci, S., Causone, F., DeRosa, F., Pagliano, L. (2015). “A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design.” Renewable and Sustainable Energy Reviews. 47, 1016–1033.
- CIBSE (1999). Daylighting and window design, Chartered institution of building services engineers, London.
- Cole, R.J. (1990). “The effect of the surfaces enclosing atria on the daylight in adjacent spaces.” Build Environ. 25, 37–42. doi:10.1016/0360-1323(90)90039-T.
- Dewey, E.J., Littlefair, P.J. (1998). “Rooflight spacing and uniformity.” Light Res Technol. 30, 119–25. doi:10.1177/096032719803000305.
- Du, J., Sharples, S. (2010a). “Analysing the impact of reflectance distributions and well geometries on vertical surface daylight levels in atria for overcast skies.” Build Environ. 45, 1733–45. doi:10.1016/j.buildenv.2010.01.026.
- Du, J., Sharples, S. (2010b). “Daylight in atrium buildings: Geometric shape and vertical sky components.” Light Res Technol. 42, 385–97. doi:10.1177/1477153510366184.
- Du, J., Sharples, S. (2011a). “Assessing and predicting average daylight factors of adjoining spaces in atrium buildings under overcast sky.” Build Environ. 46, 2142–52. doi:10.1016/j.buildenv.2011.04.020.
- Du, J., Sharples, S. (2011b). “The assessment of vertical daylight factors across the walls of atrium buildings , Part 2 : Rectangular atria.” Light Res Technol. 44, 1–15. doi: 10.1177/1477153511412531.
- Du, J., Sharples, S. (2011c). “The variation of daylight levels across atrium walls: Reflectance distribution and well geometry effects under overcast sky conditions.” Sol Energy. 85, 2085–100. doi:10.1016/j.solener.2011.05.015.
- Du, J., Sharples, S. (2012). “The assessment of vertical daylight factors across the walls of atrium buildings, Part 1: Square atria”. Light Res Technol. 44, 109–23. doi:10.1177/1477153511412530.
- Edmonds, I.R. (1993). “Performance of laser cut light deflecting panels in daylighting Applications”. Solar Energy Materials and Solar Cells. 29, 1_26.
- Edmonds, I.R., Jardine, P.A., Rutledge, G. (1995). “Daylighting with angular-selective skylights: Predicted performance”. Light Res Technol. 28, 122_130.
- El-Abd, W., Kamel, B., Afify, M., Dorra, M. (2018). “Assessment of skylight design configurations on daylighting performance in shopping malls: A case study”. Sol Energy. 170, 358–68. doi:10.1016/j.solener.2018.05.052.
- Falt, M., Pettersson, F., Zevenhoven, R. (2017). “Modified predator-prey algorithm approach to designing a cooling or insulating skylight”. Building and Environment. 331–338.
- Fan, Zh., Yang, Z., Yang, L. (2020). “Daylight performance assessment of atrium skylight with integrated semi-transparent photovoltaic for different climate zones in China”. Building and Environment. Doi: https://doi.org/10.1016/j.buildenv.2020.107299.
- Fang, Y., Cho, S. (2019). “Design optimization of building geometry and fenestration for daylighting and energy performance”. Solar Energy. 191: 7–18.
- Fazeli, N., Mahdavinejad, M., Bemaniyan, R. (2019). “Dynamic Envelope and Control Shading Pattern for Office Buildings Visual Comfort in Tehran”. Space Ontology International Journal. 8(3): 31–40.
- Fontoynont, M., Place, W., Bauman, F. (1984). “Impact of electric lighting efficiency on the energy saving potential of daylighting from roof monitors.” Energy Build. 6, 375–86. doi:10.1016/0378-7788(84)90020-3.
- Galal, K.S. (2019). “The impact of atrium top materials on daylight distribution and heat gain in the Lebanese coastal zone”. Alexandria Engineering Journal. 58: 659–676.
- Garcia-Hansen, V., Esteves, A., Pattini, A. (2002). “Passive solar systems for heating, daylighting and ventilation for rooms without an equator-facing façade”. Renew Energy. 26, 91–111. doi:10.1016/S0960-1481(01)00089-1.
- Ghasemi, M., Noroozi, M., Kazemzadeh, M., Roshan, M. (2015). “The influence of well geometry on the daylight performance of atrium adjoining spaces: A parametric study”. J Build Eng. 3, 39–47. doi:10.1016/j.jobe.2015.06.002.
- Henriques, G.C., Duarte, J.P., Leal, V. (2012). “Strategies to control daylight in a responsive skylight system”. Autom Constr. 28, 91–105. doi:10.1016/j.autcon.2012.06.002.
- Huang, Y., Borong, L., Yao, N., Yingxin, Z. (2015). “Functional Relationship between Lighting Energy Consumption and the Main Parameters for Double Atrium Offices”. Procedia Eng. 121, 1869–1879. doi: 10.1016/j.proeng.2015.09.169
- Illuminating Engineering Society of North America (IESNA), (2013). “IES LM-83-12 IES Spatial Daylight. Autonomy (sDA) and Annual Sunlight Exposure (ASE).” IESNA Lighting, New York, United States.
- Iyer-Raniga, U. (1994). “Daylighting in atrium spaces.” Archit Sci Rev. 37, 195–208. doi:10.1080/00038628.1994.9697347.
- Kim, C.S., Chung, S.J. (2011). “Daylighting simulation as an architectural design process in museums installed with toplights.” Build Environ. 46, 210–22. doi:10.1016/j.buildenv.2010.07.015.
- Kim, C.S., Seo, K.W. (2012). “Integrated daylighting simulation into the architectural design process for museums.” Build Simul. 5, 325–36. doi:10.1007/s12273-012-0084-5.
- Kim, G., Kim, J.T. (2010). “Luminous impact of balcony floor at atrium spaces with different well geometries”. Build Environ. 45, 304–10. doi:10.1016/j.buildenv.2009.08.014.
- Koster, H. (2012). “Daylighting Controls, Performance and Global Impacts”. Encyclopaedia of Sustainability Science and Technology, Springer New York. 2846–2896.
- Kristl, Ž., Krainer, A. (1999). “Light wells in residential building as a complementary daylight source”. Sol Energy. 65, 197–206. doi:10.1016/S0038-092X(98)00127-3.
- Laborda, M.Á.C., García, I.A., Escudero, J.F.A., Sendra, J.J. (2015). “Towards finding the optimal location of a ventilation inlet in a roof monitor skylight, using visual and thermal performance criteria, for dwellings in a Mediterranean climate.” J Build Perform Simul. 8, 226–38. doi:10.1080/19401493.2014.913683.
- Lam, W.M.C. (1986). Sunlighting as formgiver for Architecture. New York: Van Nostrand Reinhold Company Inc. 148.
- Laouadi, A., Atif, M.R., Galasiu, A. (2002). “Towards developing skylight design tools for thermal and energy performance of atriums in cold climates.” Build Environ. 12, 1289–316.
- Laouadi, A. (2005). “Models of optical characteristics of barrel-vault skylights: Development, validation and application”. Light Res Technol. 37, 235–63.
- Laouadi, A., Atif, M.R. (1998). “Transparent domed skylights: Optical model for predicting transmittance, absorptance and reflectance”. Light Res Technol. 30, 111–8.
- Lau, B., Duan, Z. (2008). “The daylight benefit conferred upon adjoining rooms by specular surfaces in top-lit atria”. Archit Sci Rev. 51, 204–11. doi:10.3763/asre.2008.5125.
- Leung, T.C.Y., Rajagopalan, P., Fuller, R. (2013). “Performance of a daylight guiding system in an office building”. Sol Energy. 94, 253–65. doi:10.1016/j.solener.2013.05.004.
- Malekafzali, A.A., Sok, E., Niemasz, J. (2017). “Electrochromic glass vs. fritted glass: An analysis of glare control performance”. Energy Procedia. 122, 343–8. doi:10.1016/j.egypro.2017.07.334.
- Mardaljevic, J., Heschong, L., Lee, E. (2009). “Daylight metrics and energy savings”. Light Res Technol. 41(3), 261–83.
- Matusiak, B., Aschehoug, M., Littlefair, P. (1999). “Daylighting strategies for an infinitely long atrium: An experimental evaluation.” Light Res Technol. 31, 23–34. doi:10.1177/096032719903100105.
- Mohsenin, M., Hu, J. (2015). “Assessing daylight performance in atrium buildings by using Climate Based Daylight Modeling”. Sol Energy. 119, 553–60. doi:10.1016/j.solener.2015.05.011.
- Motamedi, S., Liedl, P. (2017). “Integrative algorithm to optimize skylights considering fully impacts of daylight on energy.” Energy Build. 138, 655–65. doi:10.1016/j.enbuild.2016.12.045.
- Parent, M.D., Murdoch, J.B. (1989). “Skylight dome-well system analysis from intensity distribution”. Light Res Technol. 21, 111_123.
- Philips, D. (2004). Daylighting, Natural light in architecture. Oxford: Elsevier. 22,23.
- Ruck, N. (2000). Daylight in buildings. Berkeley: Lawrence Berkeley National Laboratory.
- Rastegari, M., Pournaseri, S., Sanaieian, H. (2020). “Daylight optimization through architectural aspects in an office building atrium in Tehran”. Journal of Building Engineering, doi: https://doi.org/10.1016/j.jobe.2020.10171
- Samant, S. (2011). “Atrium and its adjoining spaces: A study of the influence of atrium façade design”. Archit Sci Rev. 54, 316–28. doi:10.1080/00038628.2011.613640.
- Samant, S., Sharples, S. (2004). “Surface reflectance distributions and their effect on average daylight factor values in atrium buildings.” Archit Sci Rev. 47, 177–81. doi:10.1080/00038628.2004.9697041.
- Samant, S., Yang, F. (2007). “Daylighting in atria: The effect of atrium geometry and reflectance distribution.” Light Res Technol. 39, 147–57. doi:10.1177/1365782806074482.
- Sharp, F., Lindsey, D., Dols, J., Coker, J. (2014). “The use and environmental impact of Daylighting”. J Clean Prod. 462–71.
- Sharples, S., Lash, D. (2004). “Reflectance distributions and vertical daylight illuminances in atria.” Light Res Technol. 36, 45–55. doi:10.1191/1477153504li103oa.
- Sharples, S., Mahambrey, S. (1999). “Reflectance distributions and atrium daylight levels: A model study”. Light Res Technol. 31, 165–70. doi:10.1177/096032719903100405.
- Sharples, S., Mcibse, C., Shea, A.D. (2015). Daylight transmission of atrium roofs under overcast and partly cloudy skies”. Light Res Technol. 32, 153–5.
- Sharples, S., Shea, A.D. (1999). “Roof obstructions and daylight levels in atria: A model study under real skies”. Light Res Technol. 31, 181–5. doi:10.1177/096032719903100408.
- Sheppard, R., Wright, H. (1984). Building for daylight. London: George Allen & Unwin Ltd. 11,29.
- Sher, F., Kawai, A., Güleç, F., Sadiq, H. (2019). “Sustainable energy saving alternatives in small buildings”. Sustainable Energy Technologies and Assessments. 32: 92–99.
- Sudan, M., Mistrick, R.G., Tiwari, G.N. (2017). “Climate-Based Daylight Modeling (CBDM) for an atrium: An experimentally validated novel daylight performance”. Sol Energy. 158, 559–71. doi:10.1016/j.solener.2017.09.067.
- Tian, M., Zhang, L., Su, Y., Xuan, Q., Li, G., Lv, H. (2019). “An evaluation study of miniature dielectric crossed compound parabolic concentrator (dCCPC) panel as skylights in building energy simulation”. Solar Energy. 179: 264–278.
- Treado, S., Gillette, G., Kusuda, T. (1984). “Daylighting with windows, skylights, and clerestories”. Energy Build. 6, 319–30. doi:10.1016/0378-7788(84)90015-X.
- Tsangrassoulis, A., Santamouris, M. (2000). “A Method to estimate the daylight efficiency of round skylights”. Energy Build. 32, 41–5. doi:10.1016/S0378-7788(99)00039-0.
- United States Green Building Council (USGBC), (2017). LEED v4: Daylight. Technical report, US Green Building Council.
- Yi, R., Shao, L., Su, Y., Riffat, S. (2009). “Daylighting performance of atriums in subtropical climate”. Int J Low-Carbon Technol. 4, 230–7. doi:10.1093/ijlct/ctp027.
- Yoon, Y.J., Moeck, M., Mistrick, R.G., Bahnfleth, W.P. (2008). “How Much Energy Do Different Toplighting Strategies Save?” J Archit Eng. 14, 101–10. doi:10.1061/(ASCE)1076-0431(2008)14:4.
- Zeinalzadeh, T., Nikghadam, N., Fayaz, R. (2021). “Determining the Proportions of the Living Room to Optimize the Daylight Case Study: A Building with a Common Plan in Tehran”. Space Ontology International Journal. 10(2): 1–17.
Website References
|