تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,629 |
تعداد مشاهده مقاله | 78,550,499 |
تعداد دریافت فایل اصل مقاله | 55,698,473 |
تولید توان الکتریکی با قابلیت اطمینان بالا در هواپیما بر اساس ساختار هوشمند کنترل افتی ژنراتورها | ||
روشهای هوشمند در صنعت برق | ||
مقاله 2، دوره 13، شماره 52، اسفند 1401، صفحه 19-32 اصل مقاله (1007.48 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسنده | ||
امیر خالدیان* | ||
گروه مهندسی برق- دانشگاه فنی و حرفه ای، تهران، ایران | ||
چکیده | ||
پیشرفت تکنولوژی الکترونیک قدرت، افزایش قابلیت اطمینان سیستمهای توزیع توان و سیستمهای محرک کنترل پرواز، استفاده از انرژی الکتریکی برای تامین توان هواپیماهای پیشرفته را مورد توجه قرار داده است. این امر باعث شکلگیری مفهوم هواپیمای عمدتاً الکتریکی شده است. در این مقاله ساختار جدیدی برای تولید توان مورد نیاز بارهای الکتریکی در هواپیما پیشنهاد میشود. سیستم تولید و مصرف توان الکتریکی در هواپیما بهصورت یک ریزشبکه مدل میشود. مکانیزم تولید توان بر پایه اینورترهای منبع ولتاژ است. تغذیه جریان مستقیم اینورترها با یکسوسازی خروجی ژنراتورهای القایی فراهم میشود. توان مکانیکی مورد نیاز ژنراتورها نیز توسط موتورهای توربوجت تامین میشود. بر این اساس، تخصیص هوشمند توان اکتیو بین ژنراتورها با بهره گیری از کنترل افتی بهبود یافته محقق میشود. ضرایب افتی بهینه ژنراتورها با ترکیب روشهای مبتنی بر روشهای ریاضی گرادیان نزولی و حداقلسازی میانگین مربعات انحراف فرکانس تخصیص مییابد. شبکه الکتریکی هواپیما با کنترلکننده پیشنهادی در نرم افزار متلب شبیهسازی شده و عملکرد آن مورد بررسی قرار میگیرد. نتایج شبیهسازی نشاندهنده آن است که تخصیص مناسب توان بین ژنراتورها انجام میشود. مزیت روش پیشنهادی نسبت به ساختار مرسوم در هواپیما، حذف واسط مکانیکی ایجادکننده سرعت ثابت و افزایش قابلیت اطمینان سیستم تولید برق است. | ||
تازه های تحقیق | ||
- ساختار جدیدی برای تولید توان مورد نیاز بارهای الکتریکی در هواپیما پیشنهاد میشود. - سیستم تولید و مصرف توان الکتریکی در هواپیما بصورت یک ریزشبکه مدل میشود. - تخصیص هوشمند توان اکتیو بین ژنراتورها با بهرهگیری از کنترل افتی بهبود یافته محقق میشود. - مزیت روش پیشنهادی، حذف واسط مکانیکی و افزایش قابلیت اطمینان سیستم هواپیما است. | ||
کلیدواژهها | ||
تخصیص هوشمند توان؛ ریزشبکه؛ سیستم الکتریکی هواپیما؛ قابلیت اطمینان؛ کنترل افتی | ||
مراجع | ||
[1] G. Canciello, A. Cavallo, A.L. Schiavo, A. Russo, "Multi-objective adaptive sliding manifold control for more electric aircraft", ISA Transactions, vol. 107, pp. 316-328, Dec. 2020 (doi: 10.1016/j.isatra.2020.07.032). [2] Y. Wang, F. Xu, S. Mao, S. Yang, Y. Shen, "Adaptive online power management for more electric aircraft with hybrid energy storage systems", IEEE Trans. on Transportation Electrification, vol. 6, no. 4, pp. 1780-1790, Dec. 2020 (doi: 10.1109/TTE.2020.2988153). [3] D. Dewar, A. Formentini, K. Li, P. Zanchetta, P. Wheeler, "Optimal and automated decentralised converter control design in more electrical aircraft power electronics embedded grids", IET Power Electronics, vol. 14, no. 3, pp. 690-705, Jan. 2021 (doi: 10.1049/pel2.12056). [4] A. Eid, M. Abdel-Salam, H. El-Kishky, T. El-Mohandes, "Active power filters for harmonic cancellation in conventional and advanced aircraft electric power systems", Electric Power Systems Research, vol. 79, no. 1, pp. 80-88, April 2009 (doi: 10.1016/j.epsr.2008.05.005). [5] G. Gong, M.L. Heldwein, U. Drofenik, J. Minibock, K. Mino, J.W. Kolar, "Comparative evaluation of three-phase high-power-factor AC-DC converter concepts for application in future more electric aircraft", IEEE Trans. on Industrial Electronics, vol. 52, no. 3, pp. 727-737, June 2005 (doi: 10.1109/TIE.2005.843957) [6] Y. Jia, K. Rajashekara, "An induction generator-based ac/dc hybrid electric power generation system for more electric aircraft", IEEE Trans. on Industry Applications, vol. 53, no. 3, pp. 2485-2494, May/June 2017 (doi: 10.1109/TIA.2017.2650862). [7] A. Khaledian, "Fuzzy logic based controller for optimization of voltage unbalance compensation in an autonomous electric microgrid", Annals of Optimization Theory and Practice, vol. 4, no. 2, pp. 39-54, Summer 2021 (doi: 10.22121/AOTP.2021.286982.1068). [8] M.A. Jirdehi, V.S. Tabar, S. Ghassemzadeh, S. Tohidi, "Different aspects of microgrid management: A comprehensive review", Journal of Energy Storage, vol. 30, Article Number: 101457, Aug. 2020 (doi: 10.1016/j.est.2020.101457). [9] M. Alilou, S. Sadi, S. Zamanian, J. Gholami, S. Moshari, "Improving the efficiency of actual distribution system by allocating multi-DG and DSTATCOM", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 45, pp. 1-15, June 2021 (dor: 20.1001.1.23223871.1400.12.1.1.7) (in Persian). [10] Y. Zhang, Y. Yu, R. Su, J. Chen, "Power scheduling in more electric aircraft based on an optimal adaptive control strategy," IEEE Trans. on Industrial Electronics, vol. 67, no. 12, pp. 10911-10921, Dec. 2020 (doi: 10.1109/TIE.2019.2960718). [11] K. Rouzbehi, A. Miranian, J.M. Escaño, E. Rakhshani, N. Shariati, E. Pouresmaeil, "A data-driven based voltage control strategy for DC-DC converters: Application to DC microgrid", Electronics, vol. 8, no. 5, Article Number: 493, 2019 (doi: 10.3390/electronics8050493). [12] M. Zarif, A. Miranian, "Model predictive control of multi-terminal DC grids with offshore wind farms", Proceeding of the IEEE/ICRERA, pp. 717-721, Milwaukee, WI, USA, Oct. 2014 (doi: 10.1109/ICRERA.2014.7016479). [13] L. Rubino, G. Rubino, P. Conti, "Design of a power system supervisory control with linear optimization for electrical load management in an aircraft on-board dc microgrid", Sustainability, vol. 13, no. 15, Article Number: 8580, July 2021 (doi: 10.3390/su13158580). [14] B.K. Unnikrishnan, M.S. Johnson, E.P. Cheriyan, "Small signal stability improvement of a microgrid by the optimised dynamic droop control method", IET Renewable Power Generation, vol. 14, no. 5, pp. 822-833, April 2020 (doi: 10.1049/iet-rpg.2019.0428). [15] P.H. Divshali, A. Alimardani, S.H. Hosseinian, M. Abedi, "Decentralized cooperative control strategy of microsources for stabilizing autonomous VSC-based microgrids", IEEE Trans. on power systems, vol. 27, no. 4, pp. 1949-1959, Nov. 2012 (doi: 10.1109/TPWRS.2012.2188914). [16] P. Karlsson, J. Björnstedt, M. Ström, "Stability of voltage and frequency control in distributed generation based on parallel-connected converters feeding constant power loads", EPE Journal, vol. 17, no. 3, pp. 38-46, 2007 (doi: 10.1080/09398368.2007.11463658). [17] P. Hasanpor Divshali, S.H. Hosseinian, M. Abedi, A. Alimardani, "Small-signal stability and load-sharing improvement of autonomous microgrids using auxiliary loop", Electric Power Components and Systems, vol. 40, no. 6, pp. 648-671, Mar. 2012 (doi: 10.1080/15325008.2011.653857). [18] D.A. Gadanayak, "Protection algorithms of microgrids with inverter interfaced distributed generation units-A review", Electric Power Systems Research, vol. 192, Article Number: 106986, March 2021 (doi: 10.1016/j.epsr.2020.106986). [19] H. Radmanesh, H. Jashnani, A. Khaledian, H. Sobhani, "Optimal and stable electric power system for more electric aircraft: Parallel operation of generators and weight reduction", Journal of Energy Management and Technology, vol. 5, no. 2, pp. 23-31, Spring 2021 (doi: 10.22109/JEMT.2020.213436.1219). [20] A. Khaledian, M. Aliakbar Golkar, "A new power sharing control method for an autonomous microgrid with regard to the system stability", Automatika, vol. 59, no. 1, pp. 87-93, July 2018 (doi: 10.1080/00051144.2018.1501462). [21] M.F. Shaaban, A. Saber, M. Ammar, H. Zeineldin, "A multi-objective planning approach for optimal DG allocation for droop based microgrids", Electric Power Systems Research, vol. 200, Article Numbser: 107474, Nov. 2021 (doi: 10.1016/j.epsr.2021.107474). [22] M.M.A. Abdelaziz, H.E. Farag, E.F. El-Saadany, "Optimum droop parameter settings of islanded microgrids with renewable energy resources", IEEE Trans. on Sustainable Energy, vol. 5, no. 2, pp. 434-445, April 2014 (doi: 10.1109/TSTE.2013.2293201). [23] A. Elrayyah, Y. Sozer, M.E. Elbuluk, "A novel load-flow analysis for stable and optimized microgrid operation", IEEE Trans. on Power Delivery, vol. 29, no. 4, pp. 1709-1717, Aug. 2014 (doi: 10.1109/TPWRD.2014.2307279). [24] V.B. Foroutan, M.H. Moradi, M. Abedini, "Optimal operation of autonomous microgrid including wind turbines", Renewable Energy, vol. 99, pp. 315-324, Dec. 2016. (doi: 10.1016/j.renene.2016.07.008). [25] M.M. Abdelaziz, E. El-Saadany, "Maximum loadability consideration in droop-controlled islanded microgrids optimal power flow", Electric Power Systems Research, vol. 106, pp. 168-179, Jan. 2014 (doi: 10.1016/j.epsr.2013.08.020). [26] M.M. Abdelaziz, E. El-Saadany, "Economic droop parameter selection for autonomous microgrids including wind turbines", Renewable Energy, vol. 82, pp. 108-113, Oct. 2015 (doi: 10.1007/978-3-319-05708-8_31). [27] M.M.A. Abdelaziz, H.E. Farag, E.F. El-Saadany, "Optimum reconfiguration of droop-controlled islanded microgrids", IEEE Trans. on Power Systems, vol. 31, no. 3, pp. 2144-2153, May 2016 (doi: 10.1109/TPWRS.2015.2456154). [28] A. Eid, H. El-Kishky, M. Abdel-Salam, T. El-Mohandes, "Constant frequency aircraft electric power systems with harmonic reduction", Proceeding of the IEEE/IECON, pp. 623-628, Orlando, FL, USA, Nov. 2008 (doi: 10.1109/IECON.2008.4758026). [29] I. Moir, A. Seabridge, "Aircraft systems: Mechanical, electrical and avionics subsystems integration", John Wiley & Sons, 2011. [30] I. Moir, A. Seabridge, "Design and development of aircraft systems", John Wiley & Sons, 2012. [31] N. Taheri, H. Orojlo, F. Ebrahimi, "Damping controller design in offshore wind power plants to improve power system stability using fractional order PID controllers based on optimized exchange market algorithm", Journal of Intelligent Procedures in Electrical Technology, vol. 13, no. 51, pp. 91-110, Dec. 2022 (dor: 20.1001.1.23223871.1401.13.51.6.9) (in Persian). [32] B. Alghamdi, C.A. Cañizares, "Frequency regulation in isolated microgrids through optimal droop gain and voltage control", IEEE Trans. on Smart Grid, vol. 12, no. 2, pp. 988-998, 2020 (doi: 10.1109/TSG.2020.3028472). | ||
آمار تعداد مشاهده مقاله: 1,034 تعداد دریافت فایل اصل مقاله: 395 |