تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,625 |
تعداد مشاهده مقاله | 78,440,647 |
تعداد دریافت فایل اصل مقاله | 55,459,896 |
A New Approach To Train Multilayer Perceptron Ann Using Error Back-Propagation And Genetic Algorithms Hybrid: A Case Study Of Pvtx Estimation Of Ch4+Cf4 Gas Mixture | ||
International Journal of Industrial Chemistry | ||
دوره 2، شماره 3، آذر 2011، صفحه 177-182 اصل مقاله (443.19 K) | ||
نوع مقاله: research article | ||
نویسندگان | ||
Abdolreza Moghadassi* 1؛ Mahmood Reza Nikkholgh1؛ Sayed Mohsen Hosseini1؛ Fahime Parvizian1؛ Seyyed Jelaladdin Hashemi2 | ||
1Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran. | ||
2Petroleum University of Technology, Ahvaz, Iran. | ||
چکیده | ||
A new algorithm to train Multilayer Perceptron Artificial Neural Network using the genetic and Error Back-propagation algorithms Hybrid has been devised. The new algorithm solves the local minimum trap as a natural result of the standard numerical optimization based methods and by following the global minimums the ANN training accuracy has been highly improved. There are many algorithms for training a Multilayer Perceptron ANN to estimate the PVTx of CH4+CF4 gas mixture. The new devised algorithm is compared and evaluated against these algorithms and indicates a better accuracy. | ||
کلیدواژهها | ||
ARTIFICIAL NEURAL NETWORK؛ GAS MIXTURE؛ GENETIC ALGORITHM؛ HYBRID؛ PVTS ESTIMATION | ||
آمار تعداد مشاهده مقاله: 38 تعداد دریافت فایل اصل مقاله: 35 |