| تعداد نشریات | 418 |
| تعداد شمارهها | 10,013 |
| تعداد مقالات | 83,708 |
| تعداد مشاهده مقاله | 79,610,320 |
| تعداد دریافت فایل اصل مقاله | 56,290,710 |
A New Approach To Train Multilayer Perceptron Ann Using Error Back-Propagation And Genetic Algorithms Hybrid: A Case Study Of Pvtx Estimation Of Ch4+Cf4 Gas Mixture | ||
| International Journal of Industrial Chemistry | ||
| دوره 2، شماره 3، آذر 2011، صفحه 177-182 اصل مقاله (443.19 K) | ||
| نوع مقاله: research article | ||
| نویسندگان | ||
| Abdolreza Moghadassi* 1؛ Mahmood Reza Nikkholgh1؛ Sayed Mohsen Hosseini1؛ Fahime Parvizian1؛ Seyyed Jelaladdin Hashemi2 | ||
| 1Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran. | ||
| 2Petroleum University of Technology, Ahvaz, Iran. | ||
| چکیده | ||
| A new algorithm to train Multilayer Perceptron Artificial Neural Network using the genetic and Error Back-propagation algorithms Hybrid has been devised. The new algorithm solves the local minimum trap as a natural result of the standard numerical optimization based methods and by following the global minimums the ANN training accuracy has been highly improved. There are many algorithms for training a Multilayer Perceptron ANN to estimate the PVTx of CH4+CF4 gas mixture. The new devised algorithm is compared and evaluated against these algorithms and indicates a better accuracy. | ||
| کلیدواژهها | ||
| ARTIFICIAL NEURAL NETWORK؛ GAS MIXTURE؛ GENETIC ALGORITHM؛ HYBRID؛ PVTS ESTIMATION | ||
|
آمار تعداد مشاهده مقاله: 47 تعداد دریافت فایل اصل مقاله: 39 |
||