تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,800,527 |
تعداد دریافت فایل اصل مقاله | 54,843,338 |
An Introduction to the Application of Tensorial Manifold Learning Methods in the Digital Image Processing and Computer Vision | ||
International Journal of Mathematical Modelling & Computations | ||
مقاله 3، دوره 12، 1 (WINTER) - شماره پیاپی 45، خرداد 2022، صفحه 27-35 اصل مقاله (936.61 K) | ||
نوع مقاله: Full Length Article | ||
شناسه دیجیتال (DOI): 10.30495/ijm2c.2022.1936139.1224 | ||
نویسندگان | ||
Hamid Reza Yazdani* 1؛ Ali Reza Shojaeifard2 | ||
1Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran | ||
2Department of Mathematics, Faculty of Sciences, Imam Hossein Comprehensive University, Tehran, Iran. | ||
چکیده | ||
Tensors as vector fields structures and manifolds as great geometrical-topological structures have many applications in the fields of big data analysis. Types of norms, metrics and scalable structures have been defined from various aspects. Nowadays, the hybrid methods between tensorial algorithms and manifold learning (MaL) methods have been attracted some attention. In image and signal processing, from image recovery to face recognition, these methods have appeared very excellent. According to our experiments by MATLAB R2021a, the hybrid algorithms are powerful other than algorithms based on the efficient popular parameters. | ||
کلیدواژهها | ||
Image recovery؛ Image recognition؛ Manifold learning؛ Tensors؛ Tensor completion | ||
آمار تعداد مشاهده مقاله: 170 تعداد دریافت فایل اصل مقاله: 74 |