تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,186 |
تعداد دریافت فایل اصل مقاله | 54,843,843 |
بررسی ریزساختاری تکاسپلت آلومینایی ایجاد شده با فرآیند پاشش شعلهای سرعت بالای محلول پیشماده | ||
فرآیندهای نوین در مهندسی مواد | ||
دوره 16، شماره 3 - شماره پیاپی 62، آبان 1401، صفحه 13-28 اصل مقاله (2.18 M) | ||
نوع مقاله: علمی-پژوهشی | ||
نویسندگان | ||
سعید تقی رمضانی* 1؛ ضیاء والفی2 | ||
1دانشجوی دکتری مهندسی مواد، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مواد و فناوریهای ساخت. | ||
2دانشیار، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مواد و فناوریهای ساخت. | ||
چکیده | ||
فرآیندهای پاشش حرارتی محلول پیشماده (SPTS) روشی مناسب جهت تولید پوششهای با ساختار نانو هستند. بهواسطهی عدم رخداد کامل واکنشهایی نظیر تبخیر حلال و پیرولیز پیشماده، دستیابی به پوششهای با خواص کنترلشده در یک نرخ رسوبدهی رضایتبخش کماکان بهعنوان یک چالش مهم در این فرآیندها مطرح است که نیاز به کنترل دقیق پارامترهای پاشش دارد. در این تحقیق، بهمنظور بررسی تأثیر پارامترهای پاشش شعلهای سرعت بالای محلول پیشماده از جمله مقدار سوخت و اکسیژن، فاصله پاشش و نرخ تزریق محلول از آزمون پاشش تکاسکن بر روی زیرلایههای شیشهای استفاده شد. مورفولوژی اسپلتهای تشکیلشده و مشخصههای ساختاری با استفاده از میکروسکوپ الکترون روبشی (SEM) بررسی شد. مقایسهی ساختاری در آزمون پاشش تکاسکن که در دو نسبت سوخت به اکسیژن انجام شد، نشان داد که در پارامتر شعله با فشار اکسیژن bar 6 و سوخت bar 3 در نرخ تزریق محلول پیشمادهcm3/min 20 و فاصله پاششcm 5 به عنوان پارامتر بهینه انتخاب شد. در این پارامتر به دلیل پایین بودن نرخ تزریق محلول و انتقال گرمای بیشتر به ازای هر قطره محلول پیشماده و تکمیل فرآیندهایی که در نتیجه آن ذوب و کریستالی شدن اتفاق میافتد، تعداد اسپلتها افزایش یافت. همچنین ارزیابی پاشش تکاسکن در شعله با فشار اکسیژن bar 8 و سوخت bar 4 و فاصله پاششcm 5 نشان داد که نرخ تزریق محلول پیشمادهcm3/min 40 به دلیل افزایش تعداد اسپلتهای ریز و بهواسطهی بهبود راندمان پوششدهی مناسبتر خواهد بود. | ||
کلیدواژهها | ||
پاشش شعلهای سرعت بالا؛ پاشش تکاسکن؛ نیترات آلومینیوم؛ محلول پیشماده؛ آلومینا | ||
مراجع | ||
[1] H. Grewal, H. Singh & A. Agrawal, "Microstructural and mechanical characterization of thermal sprayed nickel–alumina composite coatings," Surface and coatings Technology, vol. 216, pp. 78-92, 2013.
[2] A. Afrasiabi, M. Saremi & A. Kobayashi, "A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ+ Al 2 O 3 and YSZ/Al 2 O 3," Materials Science and Engineering: A, vol. 478, no. 1, pp. 264-269, 2008.
[3] P. Fauchais, "Thermal Spray Fundamentals/ Fauchais, P., Heberlein, J., Boulos, M," NY: Springer, p. 1600, 2014.
[4] E. Bouyer, D. Branston, G. Lins, M. Müller, J. Verlegen & M. von Bradke, "Progress in Plasma Processing of Materials ed P Fauchais," ed: New York, USA: Begell House, 1997.
[5] س. تقیرمضانی، ض. والفی، ن. احسانی، "بررسی خواص اکسیداسیون و شوک حرارتی پوشش سپر حرارتی کامپوزیتی YSZ/Al2O3 با آلومینای ایجاد شده با فرآیند پاشش حرارتی محلول پیشماده،" فرآیندهای نوین در مهندسی مواد، دوره 14، شماره 4، صفحه 90-77، 2020.
[6] J. Rauch, G. Bolelli, A. Killinger, R. Gadow, V. Cannillo & L. Lusvarghi, "Advances in high velocity suspension flame spraying (HVSFS)," Surface and Coatings Technology, vol. 203, no. 15, pp. 2131-2138, 2009.
[7] س. س. خلیفه سلطانی، ر. ابراهیمی کهریزسنگی، ف. نعیمی، "بررسی رفتار سینتیکی اکسیداسیون ایزوترم دمای بالای پوششهای MCrAlY اعمالشده به روش HVOF،" فرآیندهای نوین در مهندسی مواد، دوره 10، صفحه 80-67، 2016.
[8] D. Chen, E. H. Jordan & M. Gell, "Solution precursor high-velocity oxy-fuel spray ceramic coatings" , Journal of the European Ceramic Society, vol. 29, no. 16, pp. 3349-3353, 2009.
[9] M. Pasandideh-Fard, V. Pershin, S. Chandra & J. Mostaghimi, "Splat shapes in a thermal spray coating process: simulations and experiments," Journal of thermal spray technology, vol. 11, no. 2, pp. 206-217, 2002.
[10] S. Brossard, "Microstructural Analysis of Thermal Spray Coatings by Electron Microscopy," University of New South Wales, 2010.
[11] A. T. T. Tran, M. Hyland, T. Qiu, B. Withy & B. James, "Effects of surface chemistry on splat formation during plasma spraying," Journal of thermal spray technology, vol. 17, no. 5-6, pp. 637-645, 2008.
[12] H. Kassner, R. Siegert, D. Hathiramani, R. Vassen & D. Stoever, "Application of suspension plasma spraying (SPS) for manufacture of ceramic coatings," Journal of thermal spray technology, vol. 17, no. 1, pp. 115-123, 2008.
[13] H. Kaβner, R. Vaβen & D. Stöver, "Study on instant droplet and particle stages during suspension plasma spraying (SPS)," Surface and coatings technology, vol. 202, no. 18, pp. 4355-4361, 2008.
[14] M. Gell et al., "Thermal barrier coatings made by the solution precursor plasma spray process," Journal of Thermal Spray Technology, vol. 17, no. 1, pp. 124-135, 2008.
[15] S. A. Deshpande, Thermal spray coatings: Insights into microstructural evolution and high temperature behavior across length scales. State University of New York at Stony Brook, 2004.
[16] L. Xie et al., "Formation of vertical cracks in solution-precursor plasma-sprayed thermal barrier coatings," Surface and Coatings Technology, vol. 201, no. 3-4, pp. 1058-1064, 2006.
[17] M. Gell, L. Xie, X. Ma, E. H. Jordan & N. P. Padture, "Highly durable thermal barrier coatings made by the solution precursor plasma spray process," Surface and Coatings Technology, vol. 177, pp. 97-102, 2004.
[18] M. Li & P. D. Christofides, "Modeling and control of high-velocity oxygen-fuel (HVOF) thermal spray: a tutorial review," Journal of thermal spray technology, vol. 18, no. 5-6, p. 753, 2009.
| ||
آمار تعداد مشاهده مقاله: 126 تعداد دریافت فایل اصل مقاله: 84 |