| تعداد نشریات | 418 |
| تعداد شمارهها | 10,013 |
| تعداد مقالات | 83,708 |
| تعداد مشاهده مقاله | 79,583,690 |
| تعداد دریافت فایل اصل مقاله | 56,278,508 |
Existence and Multiplicity Results for the p(x)- Laplacian Equation via Genus Theory | ||
| Fuzzy Optimization and Modeling Journal | ||
| مقاله 5، دوره 3، شماره 1، فروردین 2022، صفحه 64-71 اصل مقاله (664.66 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.30495/fomj.2022.1950685.1057 | ||
| نویسندگان | ||
| Asieh Rezvani1؛ Mohsen Alimohammady* 2؛ Bahram Agheli3 | ||
| 1Department of Mathematics, Qaemshahr Branch, Islamic Azad university, Qaemshahr, Iran. | ||
| 2Department of Mathematics, University of Mazandaran, Babolsar, Iran | ||
| 3Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran. | ||
| چکیده | ||
| In this paper, we study existence and multiplicity of nontrivial weak solutions for the following equation involving weight and variable exponents −𝑑𝑖𝑣 (1+|∇𝑢|2)𝑝(𝑥)−22∇𝑢=𝜆𝑚(𝑥)|𝑢|𝑝(𝑥)−2𝑢, 𝑖𝑛Ω, where Ω is a bounded domain of ℝ𝑁 with smooth enough boundary which is subject to Dirichlet boundary condition, 𝜆 is a positive real parameter and 𝑝 is real continuos function on Ω̅ with 1<𝑝(𝑥)<𝑝∗(𝑥), where 𝑝∗(𝑥)=𝑁𝑝(𝑥)𝑁−𝑝(𝑥) and 𝑝(𝑥)<𝑁 for all 𝑥∈Ω̅ , 𝑚:Ω̅→[0,∞) is a continuous function. By using variational method and Krasnoselskii,s genus theory, we show the existence and multiplicity of the solutions. For this purpose we work on a generalized variable exponent Lebesgue-Sobolev space. | ||
| کلیدواژهها | ||
| 𝑝(𝑥) – Laplacian؛ Variational Method؛ Genus Theory؛ Sobolev Space | ||
|
آمار تعداد مشاهده مقاله: 106 تعداد دریافت فایل اصل مقاله: 110 |
||