- Alizadeh, A. M., Hashempour-Baltork, F., Alizadeh-Sani, M., Maleki, M., Azizi-Lalabad, M., and Khosravi-Darani, K. (2020). Inhibition of Clostridium botulinum and its toxins by probiotic bacteria and their metabolites: an update review. Quality Assurance and Safety of Crops and Foods, 12: 59-68.
- Aponte, G., Mancilla, C., Carreazo, N. and Galarza, R. (2013). Probiotics for treating persistent diarrhea in children. Cochrane Database of Systematic Reviews, 8: 1-18.
- Avaiyarasi, N., Ravindran, A., Venkatesh, P. and Arul, V. (2016). In vitro selection, characterization and cytotoxic effect of bacteriocin of Lactobacillus sakei GM3 isolated from goat milk. Food Control, 69: 124-133.
- Bao, Q., Liu, W., Wang, W., Qing, M., Chen, X. and Zhang, H. (2012). Isolation and identification of cultivable lactic acid bacteria in traditional yak milk products of Gansu Province in China. The Journal of General and Applied Microbiology, 58(2): 95-105.
- Cantón, E., Espinel-Ingroff, A. and Pemán, J. (2009). Trends in antifungal susceptibility testing using CLSI reference and commercial methods. Expert Review of Anti-infective Therapy, 7(1): 107-119.
- Chateau, N., Deschamps, A. and Sassi, A. (1994). Heterogeneity of bile salts resistance in the Lactobacillus isolates of a probiotic consortium. Letters in Applied Microbiology, 18(1), 42-44.
- Haghshenas, B., Nami, Y., Almasi, A., Abdullah, N., Radiah, D., Rosli, R., et al. (2017). Isolation and characterization of probiotics from dairies. Iranian Journal of Microbiology, 9(4): 234.
- Kermanshahi, R. and Peymanfar, S. (2012). Isolation and identification of lactobacilli from cheese, yoghurt and silage by 16S rDNA gene and study of bacteriocin and biosurfactant production. Microbiology, 5(4): 528-532. [In Persian]
- Kiani, A., Nami, Y., Hedayati, S., Jaymand, M., Samadian, H. and Haghshenas B. (2021). Tarkhineh as a new microencapsulation matrix improves the quality and sensory characteristics of probiotic Lactococcus lactis KUMS-T18 enriched potato chips. Scientific Reports, 11(1): 1-13.
- Kiani, A., Nami, Y., Hedayati, S., Komi, D., Goudarzi, F. and Haghshenas B. (2021). Application of Tarkhineh fermented product to produce potato chips with strong probiotic properties, high shelf-life, and desirable sensory characteristics. Frontiers in Microbiology, 12: 1-13.
- Kumar, D., Rejitha, R., Devika, S., Balakumaran, M., Rebecca, A. and Kalaichelvan, P. (2012). Production, optimization and purification of lipase from Bacillus sp. MPTK 912 isolated from oil mill effluent. Advances in Applied Science Research, 3(2): 930-938.
- Mirzaei, E., Lashani, E. and Davoodabadi, A. (2018). Antimicrobial properties of lactic acid bacteria isolated from traditional yogurt and milk against ShigellaGMS Hygiene and Infection Control, 13: 1-5.
- Moradi, M., Kousheh, S. A., Almasi, H., Alizadeh, A., Guimarães, J. T., Yılmaz, N., and Lotfi, A. (2020). Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Comprehensive Reviews in Food Science and Food Safety, 19(6): 3390-3415.
- Narimani, T., Tarinejad, A., and Hejazi, M. A. (2015). Isolation and biochemical and molecular identification of Lactobacillus bacteria with probiotic potential from traditional cow milk and yogurt of Khoi city. Journal of Food Science and Technology, 12(48): 113-126. [In Persian]
- Nitisinprasert, S., Nilphai, V., Bunyun, P., Sukyai, P., Doi, K. and Sonomoto, K. (2000). Screening and identification of effective thermotolerant lactic acid bacteria producing antimicrobial activity against Escherichia coli and Salmonella sp. resistant to antibiotics. Agriculture and Natural Resources,34(3): 387-400.
- Ogunbanwo, S., Sanni, A. and Onilude, A. (2003). Characterization of bacteriocin produced by Lactobacillus plantarum F1 and Lactobacillus brevisAfrican Journal of Biotechnology, 2(8): 219-227.
- Ortolani, M. B. T., Yamazi, A. K., Moraes, P. M., Vicosa, G. N., and Nero, L. A. (2010). Microbiological quality and safety of raw milk and soft cheese and detection of autochthonous lactic acid bacteria with antagonistic activity against Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus. Foodborne Pathogens and Disease, 7(2): 175-180.
- Ouiddir, M., Bettache, G., Salas, M., Pawtowski, A., Donot, C., Brahimi, S., et al. (2019). Selection of Algerian lactic acid bacteria for use as antifungal bioprotective cultures and application in dairy and bakery products. Food Microbiology, 82: 160-170.
- Ramos Pereira, J., Mareze, J., Fernández, D., Rios EA, Santos, J. and López Díaz, TM. (2021). Antifungal activity of lactic acid bacteria isolated from milk against Penicillium commune, P. nordicum, and verrucosum. International Journal of Food Microbiology, 355: 109331.
- Shehata, M., Badr, A., El Sohaimy, S., Asker, D. and Awad, T. (2019). Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Annals of Agricultural Sciences, 64(1): 71-78.
- Xu, Y., Zhou, T., Tang, H., Li, X., Chen, Y., Zhang, L., et al. (2020). Probiotic potential and amylolytic properties of lactic acid bacteria isolated from Chinese fermented cereal foods. Food Control, 111: 107057.
|