Reference
- Anli M, Baslam M, Tahiri A, Raklami A, Symanczik S, Boutasknit A, et al. Biofertilizers as Strategies to Improve Photosynthetic Apparatus, Growth, and Drought Stress Tolerance in the Date Palm. Front Plant Sci. 2020;11(October):1–27.
- Itelima J, Wj B, MD S, Ia O, Oj E. A review : Biofertilizer - A key player in enhancing soil fertility and crop productivity. Microbiol Biotechnol Rep. 2018;2(1):22–8.
- Mitter EK, Tosi M, Obregón D, Dunfield KE, Germida JJ. Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. Front Sustain Food Syst. 2021;5(February):1–23.
- de Souza R, Ambrosini A, Passaglia LMP. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol. 2015;38(4):401–19.
- Younesi H, Hassani SB, Ghotbi Ravandi AA, Soltani N. Plant Growth Promoting Potential of Phormidium sp. ISC108 on Seed Germination, Growth Indices and Photosynthetic Efficiency of Maize (Zea mays L.). J Phycol Res. 2019;3(2):375–85.
- Al-Bdairi SHJ, Kamal JA. The Effect of Biofertilizer of Azolla, Phosphate and Nitrogen Fertilizers on some Growth Traits of Rice. IOP Conf Ser Earth Environ Sci. 2021;735(1).
- Suma N, Srimathi P, Roopa VM. Original Research Article Influence of Biofertilizer pelleting on seed and seedling quality characteristics of Sesamum indicum At the time of germination count , ten normal seedlings were taken at random . The length between the collar and tip of the prim. 2014;3(6):591–4.
- Ye L, Zhao X, Bao E, Li J, Zou Z, Cao K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci Rep [Internet]. 2020;10(1):1–11. Available from: http://dx.doi.org/10.1038/s41598-019-56954-2
- Zagorchev L, Atanasova A, Albanova I, Traianova A, Mladenov P, Kouzmanova M, et al. Functional characterization of the photosynthetic machinery in smicronix galls on the parasitic plant cuscuta campestris by jip-test. Cells. 2021;10(6).
- Bagheenayat, N., Barzin, G., Jafarinia, M., Pishkar, L. and Entezari M. Investigation of the effects of salinity stress on the performance of photosynthetic electron transport chain in different species of Salvia probed by JIP test. J Plant Process Funct [Internet]. 2021;10(44): 77–92. Available from: http://jispp.iut.ac.ir/article-1-1464-en.html
- Shahsavandi F, Eshghi S, Gharaghani A, Ghasemi-fasaei R, Jafarinia M. Scientia Horticulturae E ff ects of bicarbonate induced iron chlorosis on photosynthesis apparatus in grapevine. Sci Hortic (Amsterdam) [Internet]. 2020;270(December 2019):109427. Available from: https://doi.org/10.1016/j.scienta.2020.109427
- Kalaji HM, Jajoo A, Oukarroum A, Brestic M. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant. 2016;38(102):1–11.
- Collins EJ, Bowyer C, Tsouza A, Chopra M. Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. Biology (Basel). 2022;11(2).
- Jafarinia M, Shariati M. Effects of salt stress on photosystem II of canola plant ( Barassica napus , L .) probing by chlorophyll a fluorescence measurements. Iran J Sci Technol. 2012; 71–6.
- Das HK. Azotobacters as biofertilizer [Internet]. 1st ed. Vol. 108, Advances in Applied Microbiology. Elsevier Inc.; 2019. 1-43 p. Available from: http://dx.doi.org/10.1016/bs.aambs.2019.07.001
- Sumbul A, Ansari RA, Rizvi R, Mahmood I. Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi J Biol Sci [Internet]. 2020;27(12):3634–40. Available from: https://doi.org/10.1016/j.sjbs.2020.08.004
- Raffi MM, Charyulu PBBN. Azospirillum-biofertilizer for sustainable cereal crop production: Current status [Internet]. Recent Developments in Applied Microbiology and Biochemistry. Elsevier Inc.; 2021. 193-209 p. Available from: http://dx.doi.org/10.1016/B9 78-0-12-821406-0.00018-7
- Suhameena B, Devi S, Gowri R, Kumar A. Utilization of Azospirillum as a Biofertilizer – An Overview. Int J Pharm Rev Res. 2020;62(22):141–5.
- Kalaji HM, Oukarroum A, Alexandrov V, Kouzmanova M, Brestic M, Zivcak M, et al. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol Biochem [Internet]. 2014 Aug [cited 2014 Aug 31];81(April):16–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24811616
- Chen W, Jia B, Chen J, Feng Y, Li Y, Chen M, et al. Effects of Different Planting Densities on Photosynthesis in Maize Determined via Prompt Fluorescence, Delayed Fluorescence and P700 Signals. Plants. 2021;10(276):1–17.
- Rosa WS, Martins JPR, Rodrigues ES, de Almeida Rodrigues LC, Gontijo ABPL, Falqueto AR. Photosynthetic apparatus performance in function of the cytokinins used during the in vitro multiplication of Aechmea blanchetiana (Bromeliaceae). Plant Cell Tissue Organ Cult [Internet]. 2018;133(3):339–50. Available from: http://dx.doi.org/10.1007/s11240-018-1385-x
- Zubek S, Turnau K, Tsimilli-Michael M, Strasser RJ. Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria. Mycorrhiza [Internet]. 2009 Feb [cited 2014 Sep 1];19(2):113–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19011910
- Khalilpoor M, Jafarinia M. Investigation the Effects of Salinity and Nitric Oxide on the Changes of Chlorophyll a Fluorescence in Oat ( Avena sativa L .) Plant Probed by JIP-Test. Iran J plant biol. 2017; 9(31): 87-98.
- Motamed S, Jafarinia M, Kholdebarin B. Investigating the effects of drought stress on photosynthetic electron transport chain of two basil ( Ocimum basilicum L .) cultivars by m easuring “ Chlorophyll - a ” fluorescence. J Biodivers Environ Sci. 2015;7(1):564–71.
- Gupta R. The oxygen-evolving complex: a super catalyst for life on earth, in response to abiotic stresses. Plant Signal Behav [Internet]. 2020;15(12). Available from: https://doi.org/10.1080/15592324.2020.1824721
- Paul S, Neese F, Pantazis DA. Structural models of the biological oxygen-evolving complex: Achievements, insights, and challenges for biomimicry. Green Chem. 2017;19(10):2309–25.
- Cham R, Ali S, Jafarinia M, Yasrebi J. South African Journal of Botany Physiological responses of Dracocephalum kotschyi Boiss . to drought stress and Bio-fertilizers. South African J Bot [Internet]. 2022;148:180–9. Available from: https://doi.org/10.1016/j.sajb.2022.04.008
- Vitale L, Vitale E, Guercia G, Turano M, Arena C. Effects of different light quality and biofertilizers on structural and physiological traits of Spinach plants. Photosynthetica [Internet]. 2020;58(4):932–43. Available from: https://doi.org/10.32615/ps.2020.039
- Dimitrova S, Paunov M, Pavlova B, Dankov K, Kouzmanova M, Velikova V, et al. Photosynthetic efficiency of two platanus orientalis l. Ecotypes exposed to moderately high temperature – jip-test analysis. Photosynthetica [Internet]. 2020;58(Special Issue):657–70. Available from: https://doi.org/10.32615/ps.2020.012
- Basset GJ, Latimer S, Fatihi A, Soubeyrand E, Block A. Phylloquinone (Vitamin K1): Occurrence, Biosynthesis and Functions. Mini-Reviews Med Chem. 2017;17(12).
- Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. J Exp Bot. 2021;72(3):830–47.
|