تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,171 |
تعداد دریافت فایل اصل مقاله | 54,843,829 |
Cluster-Based Image Segmentation Using Fuzzy Markov Random Field | ||
Journal of Computer & Robotics | ||
مقاله 1، دوره 9، شماره 2، آذر 2016، صفحه 1-9 اصل مقاله (525.6 K) | ||
نوع مقاله: Original Research (Full Papers) | ||
نویسندگان | ||
Peyman Rasouli1؛ Mohammad Reza Meybodi* 2 | ||
1Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran | ||
2Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran | ||
چکیده | ||
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural information at the same time. Fuzzy Markov random field (FMRF) is a MRF in fuzzy space which handles fuzziness and randomness of data simultaneously. This paper propose a new method called FMRF-C which is model clustering using FMRF and applying it in application of image segmentation. Due to the similarity of FMRF model structure and image neighbourhood structure, exploiting FMRF in image segmentation makes results in acceptable levels. One of the important tools is Cellular learning automata (CLA) for suitable initial labelling of FMRF. The reason for choosing this tool is the similarity of CLA to FMRF and image structure. We compared the proposed method with several approaches such as Kmeans, FCM, and MRF and results demonstratably show the good performance of our method in terms of tanimoto, mean square error and energy minimization metrics. | ||
کلیدواژهها | ||
Clustering؛ Image segmentation؛ Markov random field؛ Fuzzy markov random field؛ Cellular learning automata | ||
آمار تعداد مشاهده مقاله: 1,499 تعداد دریافت فایل اصل مقاله: 1,318 |