تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,182 |
تعداد دریافت فایل اصل مقاله | 54,843,840 |
Clustering with K-Means Hybridization Ant Colony Optimization (K-ACO) | ||
International Journal of Mathematical Modelling & Computations | ||
مقاله 6، دوره 12، 2 (SPRING) - شماره پیاپی 46، شهریور 2022، صفحه 143-152 اصل مقاله (322.02 K) | ||
نوع مقاله: Review Article | ||
شناسه دیجیتال (DOI): 10.30495/ijm2c.2022.1953867.1249 | ||
نویسنده | ||
Dewi Juliah Ratnaningsih* | ||
Jl. Cabe Raya Pondok Cabe Pamulang | ||
چکیده | ||
One of well-known techniques in data mining is clustering. Clustering method which is very popular is K-means cluster because its algorithm is very easy and simple. However, K-means cluster has some weaknesses, one of which is that the cluster result is sensitive towards centroid initialization so that the cluster result tends to local optimal. This paper explains the modification of K-means cluster, that is, K-means hybridization with ant colony optimization (K-ACO). Ant Colony Optimization (ACO) is optimization algorithm based on ant colony behavior. Through K-ACO, the weaknesses of cluster result which tends to local optimal can be overcome well. The application of hybrid method of K-ACO with the use of R program gives better accuracy compared to K-means cluster. K-means cluster accuracy yielded by Minitab, Mathlab, and SAS at iris data is 89%. Meanwhile, K-ACO hybrid clustering with R program simulated on 38 treatments with 3-time repetitions gives accuracy result of 93,10%. | ||
کلیدواژهها | ||
Clustering؛ Data mining؛ K-means؛ Ant colony optimization؛ Program R؛ Iris data | ||
آمار تعداد مشاهده مقاله: 206 تعداد دریافت فایل اصل مقاله: 133 |