تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,623 |
تعداد مشاهده مقاله | 78,416,534 |
تعداد دریافت فایل اصل مقاله | 55,445,064 |
Fuzzy (Soft) Quasi-Interior Ideals of Semirings | ||
Transactions on Fuzzy Sets and Systems | ||
مقاله 12، دوره 1، شماره 2، بهمن 2022، صفحه 129-141 اصل مقاله (240.09 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.30495/tfss.2022.1956811.1023 | ||
نویسندگان | ||
Arsham Borumand Saeid* 1؛ Marapureddy Murali Krishna Rao2؛ Rajendra Kumar Kona3؛ Noorbhasha Rafi4 | ||
1Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran. | ||
2Department of Mathematics, Sankethika Institute of Tech. and Management, Visakhapatnam-530 041, A.P., India. | ||
3Department of Mathematics, GIS, GITAM (Deemed to be University), Visakhapatnam-530 045, A.P., India. | ||
4Department of Mathematics, Bapatla Engineering College, Bapatla, A. P., India-522 101. | ||
چکیده | ||
In this paper, as a further generalization of fuzzy ideals, we introduce the notion of a fuzzy (soft) quasi-interior ideals of semirings and characterize regular semiring in terms of fuzzy (soft) quasi-interior ideals of semirings. We prove that $(\mu, A)$ is a fuzzy soft left quasi-interior ideal over a regular semiring $M,$ if and only if $(\mu, A)$ is a fuzzy soft quasi-ideal over a semiring $M,$ and study some of the properties. | ||
کلیدواژهها | ||
Semiring؛ Regular semiring؛ Quasi-interior ideal؛ Fuzzy quasi-interior ideal؛ Fuzzy soft quasi-interior ideal | ||
مراجع | ||
[1] F. Feng, Y. B. Jun and X. Zhao, Soft semirings, Comput. and Math. with Appli., 56 (2008), 2621-2628. [2] R. A. Good and D. R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc., 58 (1952), 624-625. [3] M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices, 5 (1958), 321. [4] K. Iseki, Quasi-ideals in semirings without zero, Proc. Japan Acad., 34 (1958), 79-84. [5] K. Iseki, Ideal theory of semiring, Proc. Japan Acad., 32 (1956), 554-559. [6] K. Iseki, Ideal in semirings, Proc. Japan Acad., 34 (1958), 29-31. [7] N. Kuroki, On fuzzy semigroups, Information Sciences, 53(3) (1991), 203-236. [8] S. Lajos, On the bi-ideals in semigroups, Proc. Japan Acad., 45 (1969), 710-712. [9] S. Lajos and F. A. Szasz, On the bi-ideals in associative ring, Proc. Japan Acad., 46 (1970), 505-507. [10] P. K. Maji, R. Biswas and A. R. Roy, Fuzzy soft sets, The J. of Fuzzy Math., 9(3) (2001), 589-602. [11] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl., 37 (1999), 19-31. [12] M. Murali Krishna Rao, Bi-Interior Ideals of Γ− semirings, Disc. Math. General Algebra and Appli., 38 (2018), 239-254. [13] M. Murali Krishna Rao, A study of quasi-interior ideal of semiring, Bull. Int. Math. Virtual Inst, 2 (2019), 287-300. [14] M. Murali Krishna Rao, Bi-quasi Ideals of Γ−semirings, Disc. Math. General Algebra and Appli., 38 (2018), 69-78. [15] M. Murali Krishna Rao, Tri-Ideals Of Semirings, Bull. Int. Math. Virtual Inst., 10(1) (2020), 145-155. [16] M. Murali Krishna Rao, Fuzzy Soft Bi-interior Ideals over Γ−semirings, Journal of Hyperstructures, 10(1) (2021), 47-62. [17] M. Murali Krishna Rao, Tri-quasi Ideals of Γ−semirings, Disc. Math. General Algebra and Appli., 41 (2021), 33-44. [18] L. A. Zadeh, Fuzzy sets, Information and control, 8 (1965), 338-353. | ||
آمار تعداد مشاهده مقاله: 184 تعداد دریافت فایل اصل مقاله: 459 |