- Abebe, E., Gugsa, G. and Ahmed, M. (2020). Review on Major Food-Borne Zoonotic Bacterial Pathogens. Journal of Tropical Medicine, 2020: 4674235.
- Balciunas, E.M., Martinez, F.A.C., Todorov, S.D., de Melo Franco, B.D.G., Converti, A. and de Souza Oliveira, R.P. (2013). Novel biotechnological applications of bacteriocins: a review. Food Control, 32(1): 134-142.
- Brandelli, A. (2012). Nanostructures as promising tools for delivery of antimicrobial peptides. Mini reviews in medicinal chemistry, 12(8): 731-741.
- Cabeça, T.K., Pizzolitto, A.C. and Pizzolitto, E.L. (2012). Activity of disinfectants against foodborne pathogens in suspension and adhered to stainless steel surfaces. Brazilian Journal of Microbiology, 43(3): 1112-1119.
- Chaturongakul, S., Raengpradub, S., Wiedmann, M. and Boor, K.J. (2008). Modulation of stress and virulence in Listeria monocytogenes. Trends in Microbiology, 16(8): 388-396.
- Fahim, H.A., Khairalla, A.S. and El-Gendy, A.O. (2016). Nanotechnology: a valuable strategy to improve bacteriocin formulations. Frontiers in Microbiology, 7: 1385.
- Feng, L. and Mumper, R.J. (2013). A critical review of lipid-based nanoparticles for taxane delivery. Cancer letters, 334(2): 157-175.
- Galie, S., Garcia-Gutierrez, C., Miguelez, E.M., Villar, C.J. and Lombo, F. (2018). Biofilms in the food industry: health aspects and control methods. Frontiers in Microbiology, 9: 898.
- Good, J.A., Andersson, C., Hansen, S., Wall, J., Krishnan, K.S., Begum, A. et al., (2016). Attenuating Listeria monocytogenes virulence by targeting the regulatory protein PrfA. Cell Chemical Biology, 23(3): 404-414.
- Gray, J., Chandry, P.S., Kaur, M., Kocharunchitt, C., Fanning, S., Bowman, J.P. et al., (2021). Colonisation dynamics of Listeria monocytogenes strains isolated from food production environments. Scientific Reports, 11(1): 12195.
- Hernandez-Milian, A. and Payeras-Cifre, A. (2014). What is new in listeriosis? BioMed Research International, 358051.
- Kiral, E., kacmaz, E., Bozan, G., Arslanoglu, O., Kilic, O. and Dinleyici, E.C. (2021). 261. A rare case of meningitis and symptomatic hydrocephalus by Listeria monocytogenes in dermatomyositis: A Case Report. Open Forum Infectious Diseases, 8(Supplement_1): S237-S238.
- Li, M. (2020), Exploring the connection between acid exposure and virulence in Listeria monocytogenes, Utah State University.
- Liu, Y., Wu, L., Han, J., Dong, P., Luo, X., Zhang, Y. et al., (2020). Inhibition of biofilm formation and related gene expression of Listeria monocytogenes in response to four natural antimicrobial compounds and sodium hypochlorite. Frontiers in Microbiology, 11: 617473.
- Livak, K.J. and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4): 402-408.
- Lopes, N.A., Pinilla, C.M.B. and Brandelli, A. (2019). Antimicrobial activity of lysozyme-nisin co-encapsulated in liposomes coated with polysaccharides. Food Hydrocolloids, 93: 1-9.
- Maresca, D., De Prisco, A., La Storia, A., Cirillo, T., Esposito, F. and Mauriello, G. (2016). Microencapsulation of nisin in alginate beads by vibrating technology: Preliminary investigation. LWT-Food Science and Technology, 66: 436-443.
- Martinez, R.C.R., Alvarenga, V.O., Thomazini, M., Fávaro-Trindade, C.S. and de Souza Sant'Ana, A. (2016). Assessment of the inhibitory effect of free and encapsulated commercial nisin (Nisaplin®), tested alone and in combination, on Listeria monocytogenes and Bacillus cereus in refrigerated milk. LWT-Food Science and Technology, 68: 67-75.
- Mauriello, G., De Luca, E., La Storia, A., Villani, F. and Ercolini, D. (2005). Antimicrobial activity of a nisin‐activated plastic film for food packaging. Letters in Applied Microbiology, 41(6): 464-469.
- Pinheiro, J., Lisboa, J., Pombinho, R., Carvalho, F., Carreaux, A., Brito, C. et al., (2018). MouR controls the expression of the Listeria monocytogenes Agr system and mediates virulence. Nucleic Acids Research, 46(18): 9338-9352.
- Pinilla, C.M.B., Stincone, P. and Brandelli, A. (2021). Proteomic analysis reveals differential responses of Listeria monocytogenes to free and nanoencapsulated nisin. International Journal of Food Microbiology, 346: 109170.
- Pisano, M.B., Fadda, M.E., Melis, R., Ciusa, M.L., Viale, S., Deplano, M. et al., (2015). Molecular identification of bacteriocins produced by Lactococcus lactis dairy strains and their technological and genotypic characterization. Food Control, 51: 1-8.
- Prombutara, P., Kulwatthanasal, Y., Supaka, N., Sramala, I. and Chareonpornwattana, S. (2012). Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control, 24(1-2): 184-190.
- Rahmati, F. (2017). Characterization of Lactobacillus, Bacillus and Saccharomyces isolated from Iranian traditional dairy products for potential sources of starter cultures. AIMS Microbiology, 3(4): 815.
- Rahmati, F. (2020). Microencapsulation of Lactobacillus acidophilus and Lactobacillus plantarum in Eudragit S100 and alginate chitosan under gastrointestinal and normal conditions. Applied Nanoscience, 10(2): 391-399.
- Ramaswamy, V., Cresence, V.M., Rejitha, J.S., Lekshmi, M.U., Dharsana, K., Prasad, S.P. et al., (2007). Listeria-review of epidemiology and pathogenesis. Journal of Microbiology Immunology and Infection, 40(1): 4.
- Rossi, M.L., Paiva, A., Tornese, M., Chianelli, S. and Troncoso, A. (2008). Listeria monocytogenes outbreaks: a review of the routes that favor bacterial presence. Revista Chilena de Infectologia: organo oficial de la Sociedad Chilena de Infectologia, 25(5): 328-335.
- Salama, Y., Chennaoui, M., Sylla, A., Mountadar, M., Rihani, M. and Assobhei, O. (2016). Characterization, structure, and function of extracellular polymeric substances (EPS) of microbial biofilm in biological wastewater treatment systems: a review. Desalination and Water Treatment, 57(35): 16220-16237.
- Sen, C. and Ray, P.R. (2019). Biopreservation of dairy products using bacteriocins. Indian Food Industry, 1: 51-60.
- Stincone, P., Miyamoto, K.N., Timbe, P.P.R., Lieske, I. and Brandelli, A. (2020). Nisin influence on the expression of Listeria monocytogenes surface proteins. Journal of Proteomics, 226: 103906.
- Urban, P., Jose Valle-Delgado, J., Moles, E., Marques, J., Diez, C. and Fernandez-Busquets, X. (2012). Nanotools for the delivery of antimicrobial peptides. Current Drug Targets, 13(9): 1158-1172.
- van der Veen, S. and Abee, T. (2010). Importance of SigB for Listeria monocytogenes static and continuous-flow biofilm formation and disinfectant resistance. Applied and Environmental Microbiology, 76(23): 7854-7860.
- Were, L.M., Bruce, B., Davidson, P.M. and Weiss, J. (2004). Encapsulation of nisin and lysozyme in liposomes enhances efficacy against Listeria monocytogenes. Journal of Food Protection, 67(5): 922-927.
- Zhao, X., and Kuipers, O.P. (2021). Synthesis of silver-nisin nanoparticles with low cytotoxicity as antimicrobials against biofilm-forming pathogens. Colloids and Surfaces B: Biointerfaces, 206: 111965.
- Zhao, X., Zhao, F., Wang, J. and Zhong, N. (2017). Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Advances, 7(58): 36670-36683.
- Zohri, M., Alavidjeh, M.S., Haririan, I., Ardestani, M.S., Ebrahimi, S.E.S., Sani, H.T. et al., (2010). A comparative study between the antibacterial effect of nisin and nisin-loaded chitosan/alginate nanoparticles on the growth of Staphylococcus aureus in raw and pasteurized milk samples. Probiotics and Antimicrobial Proteins, 2(4): 258-266.
- Zohri, M., Shafiee Alavidjeh, M., Mirdamadi, S.S., Behmadi, H., Hossaini Nasr, S.M., Eshghi Gonbaki, S. et al., (2013). Nisin‐loaded chitosan/alginate nanoparticles: A hopeful hybrid biopreservative. Journal of Food Safety, 33(1): 40-49.
|