- Yildirimer L, Thanh NTK, Loizidou M & Seifalian AM. Toxicology and clinical potential of nanoparticles. Nano Today. 2011; 6(6): 585-607.
- Joy Prabu H & Johnson I. Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata, Cymbopogon citronella, Solanum verbascifolium and Tylophora ovata. Karbala International Journal of Modern Science. 2015; 1(4): 237-46.
- Zamiri R, Azmi BZ, Sadrolhosseini AR, Ahangar HA, Zaidan AW & Mahdi MA. Preparation of silver nanoparticles in virgin coconut oil using laser ablation. Int J Nanomedicine. 2011; 6: 71-5.
- Abid JP, Wark AW, Brevet PF & Girault HH. Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun (Camb). 2002; 7: 792-3.
- Kaliamurthi S, Selvaraj G, Çakmak ZE & Çakmak T. Production and characterization of spherical thermostable silver nanoparticles from Spirulina platensis (Cyanophyceae). 2016; 55(5): 568-76.
- El-Baz AF, El-Batal AI, Abomosalam FM, Tayel AA, Shetaia YM & Yang ST. Extracellular biosynthesis of anti-Candida silver nanoparticles using Monascus purpureus. J Basic Microbiol. 2016; 56(5): 531-40.
- Korbekandi H, Mohseni S, Mardani Jouneghani R, Pourhossein M & Iravani S. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif Cells Nanomed Biotechnol. 2016; 44(1): 235-9.
- Sabbagh F, Kiarostami K, Mahmoudi Khatir N, Rezania S & Muhamad II. Green synthesis of MgO. 99 ZnO. 010 nanoparticles for the fabrication of κ-Carrageenan/ NaCMC hydrogel in order to deliver catechin. 2020; 12(4): 861.
- Ghosh Chaudhuri R & Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012; 112(4): 2373-433.
- K S, S G, T R & T B. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. Journal of Nanobiotechnology. 2011; 9(1): 43.
- Hoag G, Collins J, Holcomb J, Hoag J, Nadagouda M & Varma R. Degradation of bromothymol blue by greener nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry. 2009; 19: 8671–7.
- Kaliamurthi S, Selvaraj G & Ramanathan T. Influence of Leaf Broth Concentration of Excoecaria Agallocha as a Process Variable in Silver Nanoparticles Synthesis. J Nanomed Res. 2014; 1: 1-5.
- Mahal A, Khullar P, Kumar H, Kaur G, Singh N, Jelokhani-Niaraki M & et al. Green Chemistry of Zein Protein Toward the Synthesis of Bioconjugated Nanoparticles: Understanding Unfolding, Fusogenic Behavior, and Hemolysis. ACS Sustainable Chemistry & Engineering. 2013; 1(6): 627-39.
- Azeez L, Lateef A & Adebisi SA. Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. Applied Nanoscience. 2017; 7(1-2): 59-66.
- Li Z, Jiang H, Xu C & Gu L. A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocolloids. 2015; 43: 153-64.
- Apak Ra, Özyürek M, Güçlü K & Çapanoğlu E. Antioxidant activity/capacity measurement. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of agricultural and food chemistry. 2016; 64(5): 997-1027.
- Hayyan M, Hashim MA & AlNashef IM. Superoxide ion: generation and chemical implications. Chemical reviews. 2016; 116(5): 3029-85.
- Ďuračková Z. Some current insights into oxidative stress. Physiological research. 2010; 59(4).
- Su J & Groves JT. Mechanisms of peroxynitrite interactions with heme proteins. Inorganic chemistry. 2010; 49(14): 6317-29.
- Fridovich I. The biology of oxygen radicals. 1978; 201(4359): 875-80.
- Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflügers Archiv-European Journal of Physiology. 2010; 459(6): 923-39.
- Voetsch B, Jin RC & Loscalzo J. Nitric oxide insufficiency and atherothrombosis. Histochemistry and cell biology. 2004; 122(4): 353-67.
- Kaysen GA & Eiserich JP. The role of oxidative stress–altered lipoprotein structure and function and microinflammation on cardiovascular risk in patients with minor renal dysfunction. Journal of the American Society of Nephrology. 2004; 15(3): 538-48.
- Del Rio D, Stewart AJ & Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, metabolism and cardiovascular diseases. 2005; 15(4): 316-28.
- Viner RI, Hühmer AF, Bigelow DJ & Schöneich C. The oxidative inactivation of sarcoplasmic reticulum Ca-+2ATPase by peroxynitrite. Free radical research. 1996; 24(4): 243-59.
- Cooke MS, Evans MD, Dizdaroglu M & Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. The FASEB Journal. 2003; 17(10): 1195-214.
- Phaniendra A, Jestadi DB & Periyasamy Free radicals: properties, sources, targets, and their implication in various diseases. Indian journal of clinical biochemistry. 2015; 30(1): 11-26.
- Nazem A, Mansoori GA. Nanotechnology solutions for Alzheimer's disease: advances in research tools, diagnostic methods and therapeutic agents. Journal of Alzheimer's disease. 2008; 13(2): 199-223.
- Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxidants & redox signaling. 2008; 10(11): 1923-40.
- Katta R & Brown DN. Diet and skin cancer: The potential role of dietary antioxidants in nonmelanoma skin cancer prevention. Journal of skin cancer. 2015 (2015).
- Akter M, Sikder MT, Rahman MM, Ullah AA, Hossain KFB, Banik S & et al. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of advanced research. 2018; 9: 1-16.
- Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY & et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicology letters. 2011; 201(1): 92-100.
- Babior BM. Phagocytes and oxidative stress. The American journal of medicine. 2000; 109(1): 33-44.
- Halliwell B & Gutteridge JM. Free radicals in biology and medicine. Oxford University Press, USA, 2015.
- Cillard J, Cillard P & Cormier M. Effect of experimental factors on the prooxidant behavior of α-tocopherol. Journal of the American Oil Chemists’ Society. 1980; 57(8): 255-261.
- Valgimigli L & Pratt DA. Antioxidants in Chemistry and Biology. Encyclopedia of Radicals in Chemistry, Biology and Materials, 2012.
- Lvov Y, Wang W, Zhang L & Fakhrullin R. Halloysite clay nanotubes for loading and sustained release of functional Advanced Materials. 2016; 28(6): 1227-1250.
- Gastaldi L, Ugazio E, Sapino S, Iliade P, Miletto I & Berlier G. Mesoporous silica as a carrier for topical application: the Trolox case study. Physical Chemistry Chemical Physics. 2012; 14(32): 11318-26.
- Baschieri A & Amorati R. Methods to Determine Chain-Breaking Antioxidant Activity of Nanomaterials beyond DPPH. A Review Antioxidants. 2021; 10(10): 1551.
- Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P & et al. Electron localization determines defect formation on ceria substrates. 2005; 309(5735): 752-5.
- Valgimigli L, Baschieri A & Amorati R. Antioxidant activity of nanomaterials. Journal of Materials Chemistry. 2018; 6(14): 2036-51.
- Duan H, Wang D & Li Y. Green chemistry for nanoparticle synthesis. Chemical Society Reviews. 2015; 44(16): 5778-92.
- Gong W, Xiang Z, Ye F & Zhao G. Composition and structure of an antioxidant acetic acid lignin isolated from shoot shell of bamboo (Dendrocalamus Latiforus). Industrial Crops and Products. 2016; 91: 340-9.
- Espinoza-Acosta JL, Torres-Chávez PI, Ramírez-Wong B, López-Saiz CM & Montaño-Leyva B. Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications. 2016; 11(2): 5452-81.
- Figueiredo P, Lintinen K, Hirvonen JT, Kostiainen MA & Santos HA. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science. 2018; 93: 233-69.
- Piccinino D, Capecchi E, Tomaino E, Gabellone S, Gigli V, Avitabile D & et al. Nano-Structured Lignin as Green Antioxidant and UV Shielding Ingredient for Sunscreen Applications. Antioxidants (Basel). 2021; 10(2).
- Liu Y, Ai K, Ji X, Askhatova D, Du R, Lu L & et al. Comprehensive Insights into the Multi-Antioxidative Mechanisms of Melanin Nanoparticles and Their Application To Protect Brain from Injury in Ischemic Stroke. J Am Chem Soc. 2017; 139(2): 856-62.
- Zhao H, Zeng Z, Liu L, Chen J, Zhou H, Huang L & et al. Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. 2018; 10(15): 6981-91.
- Liang Y, Zhao X, Hu T, Han Y & Guo B. Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin. J Colloid Interface Sci. 2019; 556: 514-28.
- Guo Y, Baschieri A, Mollica F, Valgimigli L, Cedrowski J, Litwinienko G & et al. Hydrogen Atom Transfer from HOO. to ortho-Quinones Explains the Antioxidant Activity of Polydopamine. Angewandte Chemie International Edition. 2021; 60(28): 15220-4.
- Mavridi-Printezi A, Guernelli M, Menichetti A & Montalti M. Bio-Applications
of Multifunctional Melanin Nanoparticles: From Nanomedicine to Nanocosmetics. 2020; 10(11).
- Nakatsuka N, Hasani-Sadrabadi MM, Cheung KM, Young TD, Bahlakeh G, Moshaverinia A & et al. Polyserotonin Nanoparticles as Multifunctional Materials for Biomedical Applications. ACS Nano. 2018; 12(5): 4761-74.
- Zhou X, McCallum NC, Hu Z, Cao W, Gnanasekaran K, Feng Y & et al. Artificial Allomelanin Nanoparticles. ACS Nano. 2019; 13(10): 10980-90.
- Le D, Dilger M, Pertici V, Diabaté S, Gigmes D, Weiss C & et al. Ultra-Fast Synthesis of Multivalent Radical Nanoparticles by Ring-Opening Metathesis Polymerization-Induced Self-Assembly. Angewandte Chemie International Edition. 2019; 58(14): 4725-31.
- Genovese D, Baschieri A, Vona D, Baboi RE, Mollica F, Prodi L & et al. Nitroxides as Building Blocks for Nanoantioxidants. ACS Applied Materials & Interfaces. 2021; 13(27): 31996-2004.
- Soule BP, Hyodo F, Matsumoto K, Simone NL, Cook JA, Krishna MC & et al. The chemistry and biology of nitroxide compounds. Free Radic Biol Med. 2007; 42(11): 1632-50.
- Luo M, Boudier A, Clarot I, Maincent P, Schneider R & Leroy P. Gold Nanoparticles Grafted by Reduced Glutathione With Thiol Function Preservation. Colloid and Interface Science Communications. 2016; 14: 8-12.
- Saravani R, Sargazi S, Saravani R, Rabbani M, Rahdar A & Taboada P. Newly crocin-coated magnetite nanoparticles induce apoptosis and decrease VEGF expression in breast carcinoma cells. Journal of Drug Delivery Science and Technology. 2020; 60: 101987.
- Deligiannakis Y, Sotiriou GA & Pratsinis SE. Antioxidant and antiradical SiO2 nanoparticles covalently functionalized with gallic acid. ACS Appl Mater Interfaces. 2012; 4(12): 6609-17.
- Massaro M, Amorati R, Cavallaro G, Guernelli S, Lazzara G, Milioto S & et al. Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications. Colloids Surf B Biointerfaces. 2016; 140: 505-13.
- Arriagada F, Günther G & Morales J. Nanoantioxidant–based silica particles as flavonoid carrier for drug delivery applications. 2020; 12(4): 302.
- Arriagada F, Günther G, Nos J, Nonell S, Olea-Azar C & Morales J. Antioxidant Nanomaterial Based on Core⁻Shell Silica Nanospheres with Surface-Bound Caffeic Acid: A Promising Vehicle for Oxidation-Sensitive Drugs. Nanomaterials (Basel). 2019; 9(2).
- Massaro M, Riela S, Guernelli S, Parisi F, Lazzara G, Baschieri A & et al. A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin. Journal of Materials Chemistry. 2016; 4(13): 2229-41.
- Shah ST, A Yehya W, Saad O, Simarani K, Chowdhury Z, Alhadi A & et al. Surface Functionalization of Iron Oxide Nanoparticles with Gallic Acid as Potential Antioxidant and Antimicrobial Agents. 2017; 7(10): 306.
- Shah ST, Yehye WA, Chowdhury ZZ & Simarani K. Magnetically directed antioxidant and antimicrobial agent: synthesis and surface functionalization of magnetite with quercetin. Peer J. 2019; 7: e7651.
- Viglianisi C, Di Pilla V, Menichetti S, Rotello VM, Candiani G, Malloggi C & et al. Linking an α-tocopherol derivative to cobalt (0) nanomagnets: magnetically responsive antioxidants with superior radical trapping activity and reduced cytotoxicity. 2014; 20(23): 6857-60.
- Bedlovičová Z, Strapáč I, Baláž M & Salayová A. A brief overview on antioxidant activity determination of silver nanoparticles. 2020; 25(14): 3191.
- Cao G & Prior RL. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clinical chemistry. 1998; 44(6): 1309-15.
- Burke KE. Mechanisms of aging and development- A new understanding of environmental damage to the skin and prevention with topical antioxidants. Mechanisms of ageing and development. 2018; 172: 123-30.
- Burke K. Photodamage of the skin: protection and reversal with topical antioxidants. Journal of Cosmetic Dermatology. 2004; 3(3): 149-55.
- Ben Haddada M, Gerometta E, Chawech R, Sorres J, Bialecki A, Pesnel S & et al. Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloids and Surfaces B: Biointerfaces. 2020; 189: 110855.
- Ansari MA, Roberts KN & Scheff SW. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radical Biology and Medicine. 2008; 45(4): 443-52.
- Rodriguez-Rodriguez A, Jose Egea-Guerrero J, Murillo-Cabezas F & Carrillo-Vico A. Oxidative stress in traumatic brain injury. Current medicinal chemistry. 2014; 21(10): 1201-11.
- Goshisht MK, Moudgil L, Rani M, Khullar P, Singh G, Kumar H & et al. Lysozyme Complexes for the Synthesis of Functionalized Biomaterials To Understand Protein–Protein Interactions and Their Biological Applications. The Journal of Physical Chemistry C. 2014; 118(48): 28207-19.
- Hu G, Lyeth BG, Zhao X, Mitchell JB & Watson JC. Neuroprotection by the stable nitroxide 3-carbamoyl-proxyl during reperfusion in a rat model of transient focal ischemia. Journal of neurosurgery. 2003; 98(2): 393-6.
- Cuzzocrea S, McDonald M, Mazzon E, Siriwardena D, Costantino G, Fulia F & et al. Effects of tempol, a membrane-permeable radical scavenger, in a gerbil model of brain injury. Brain research. 2000; 875(1-2): 96-106.
- Rzigalinski BA, Meehan K, Whiting MD, Dillon CE, Hockey K & Brewer M. Antioxidant nanoparticles. New York: CRC Press, 2011: 100-22.
- Ciofani G, Genchi GG, Liakos I, Cappello V, Gemmi M, Athanassiou A & et al. Effects of cerium oxide nanoparticles on PC12 neuronal-like cells: proliferation, differentiation, and dopamine secretion. Pharmaceutical research. 2013; 30(8).
- Tsai Y-Y, Oca-Cossio J, Agering K, Simpson NE, Atkinson MA, Wasserfall CH & et al. Wasserfall, Ioannis Constantinidis, and Wolfgang Sigmund. Novel synthesis of cerium oxide nanoparticles for free radical scavenging, 2007: 325-332.
- Schubert D, Dargusch R, Raitano J & Chan S-W. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochemical and biophysical research communications. 2006; 342(1): 86-91.
- Das M, Patil S, Bhargava N, Kang J-F, Riedel LM, Seal S & et al. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. 2007; 28(10): 1918-25.
- Bailey ZS, Nilson E, Bates JA, Oyalowo A, Hockey KS, Sajja V & et al. Cerium Oxide Nanoparticles Improve Outcome after In Vitro and In Vivo Mild Traumatic Brain Injury. J Neurotrauma. 2020; 37(12): 1452-62.
- Aneggi E, Boaro M, de Leitenburg C, Dolcetti G & Trovarelli A. Insights into the redox properties of ceria-based oxides and their implications in catalysis. Journal of Alloys and Compounds. 2006; 408: 1096-102.
- Singh N, Cohen CA & Rzigalinski BA. Treatment of neurodegenerative disorders with radical nanomedicine. Annals of the New York Academy of Sciences. 2007; 1122(1): 219-30.
- Collins JA, Diekman BO & Loeser RF. Targeting aging for disease modification in osteoarthritis. Current opinion in rheumatology. 2018; 30(1).
- Lepetsos P & Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2016; 1862(4): 576-91.
- Poulet B & Beier F. Targeting oxidative stress to reduce osteoarthritis. Springer, 2016: 1-2.
|