تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,318 |
تعداد دریافت فایل اصل مقاله | 54,843,936 |
Automotic Recognition of Sleep Spindles Based on Two-Stage Classifier with Artificial Neural Networks and Support Vector Machines | ||
Majlesi Journal of Electrical Engineering | ||
مقاله 8، دوره 2، شماره 1، شهریور 2008، صفحه 83-90 اصل مقاله (236.24 K) | ||
نوع مقاله: Review Article | ||
شناسه دیجیتال (DOI): 10.1234/mjee.v2i1.45 | ||
چکیده | ||
Sleep spindles are one of the most important transient waveforms found in the sleep EEG signal. Here, we introduce a two-stage procedure based on artificial neural networks for the automatic recognition of sleep spindles (SS) in a 19-channel electroencephalographic signal. In the first stage, a pre-processing perception is used for enhancing overall detection and also reducing computation time. In the second stage, the selected Sleep spindles (SS), classified with neural network post-classifier. Classifying tools in post-processing procedure were MLP and RBSVM that their operations are compared in the last section of the report. Visual inspection of 19-channel EEG from six subjects by one expert in this theme, showed that RBSVM operation is better than MLP with BP (Back propagation) training, that SVM provided 91.4% average sensitivity and 3.85% average false detection rate. | ||
کلیدواژهها | ||
EEG؛ en؛ Sleep spindle recognition؛ Support Vector Machines؛ back propagation algorithm | ||
آمار تعداد مشاهده مقاله: 14 تعداد دریافت فایل اصل مقاله: 30 |