تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,269 |
تعداد دریافت فایل اصل مقاله | 54,843,905 |
QAM Modulation Classification using Constellation diagram based on TTSAS Algorithm and Template Matching | ||
Majlesi Journal of Electrical Engineering | ||
مقاله 3، دوره 2، شماره 4، دی 2008 اصل مقاله (236.91 K) | ||
نوع مقاله: Review Article | ||
شناسه دیجیتال (DOI): 10.1234/mjee.v2i4.134 | ||
نویسندگان | ||
Negar Ahmadi* ؛ Reza Berangi | ||
چکیده | ||
Recently the problem of modulation classification has received much attention in military and commercial applications. Various approaches introduced to solve this problem. Most of these approaches has been based on some special characteristics of received signal which are resolvable for various types of modulations. In this paper modulated signal symbols constellation utilizing TTSAS clustering algorithm and matching with standard templates, is used for classification of QAM modulation. TTSAS algorithm used in this paper is implemented by Hamming neural network. The simulation results show the capability of this method for modulation classification with high accuracy and appropriate convergence in the presence of noise. | ||
کلیدواژهها | ||
TTSAS Clustering Algorithm؛ en؛ template matching؛ Hamming Neural Network؛ Automatic Modulation Recognition | ||
مراجع | ||
[1] A. B. Carlson, P. B. Crilly, J. C. Rutledge;
“Communication system”, McGraw Hill,
Fourth edition, 2001.
[2] Y. Yang, S. S. Soliman; “An improved
moment-based algorithm for signal
classification”, signal processing, Vol. 43,
1995, pp. 231-244 .
[3] B. Mobaseri; “ Digital modulation
Classification using constellation shape”,
Signal Processing pp. 251-277, Jan 2000 .
[4] S. S. Soliman, S. Hsue; “Signal classification
using statistical moments”, IEEE Trans. On
Communication, Vol. COM 40, No. 5, pp.
908-916, May 1992.
[5] J. Lopatka and M. Pedzisz; “Automatic
modulation classification using statistical
moments and a fuzzy classifier”, Signal
Processing Proceedings ,WCCC- ICSP 2000,
5th international conf. ' on, 21-25 Aug. 2000,
Vol.3, pp. 1500-1506.
[6] M. L. D. Wong, A. K. Nandi; “Automatic
modulation recognition using spectral and
statistical features with multi layer
perceptrons”, Sixth international symposium on
Signal processing and its application,, Aug.
2001, Vol. 2, pp.390-393.
[7] Y. O. Al-Jalili; “ Identification algorithm of
upper sideband and lower sideband SSB
signals”, Signal Processing, Vol. 42, 1995, pp.
207-213.
[8] Kim, Kiseon, Polydoros; “Digital modulation
recognition: the BPSK versus QPSK case”,
MILCOM '88, Oct. 1988, Vol. 2, pp.431-436 .
[9] J. A. Sills, Maximum-likelihood modulation
classification for PSK/'OAM, MILCOM '99,
Conf. Proceedings, 31 Oct.-3 Nov. ,1999, Vol.
1, pp. 217-220.
[10] E. E. Azzouz, A. K. Nandi; “Automatic
modulation recognition of communication
signals”, Kluwer Academic Publishers,
Boston, 1996.
[11] A. K. Nandi, E. E. Azzouz; “Algorithms for
automatic modulation recognition of
communication signals”, IEEE Trans. On
Communication, Vol. 46, No. 4, pp. 431-436,
1998.
[12] E. E. Azzouz, A. K. Nandi; “ Automatic
identification of digital modulation types”
Signal Processing , Vol. 47, pp. 55-69, 1995.
[13] N. Ghani, R. Lamontagne; “ Neural networks
applied to the classification of spectral
features for automatic modulation
recognition”, MILCOM, 1993, Vol. 1, pp.
111-115 .
[14] B. Mobaseri, “Constellation shape as a
robust signature for digital modulation
recognition”, Military Communications
Conference Proceedings, MILCOM IEEE
,Volume 1, Issue ,pp. 442-446, 1999.
[15] Sergios Theodoridis, Konstantions
Koutroumbas; “Pattern Recognition”,
Second Edition , Elsevier Academic Press,
2003.
[16] Earl Gose, Richard Johnsonbaugh, Steve Jost;
“Pattern Recognition and Image Analysis”,
Prentice Hall PTR , 1996. | ||
آمار تعداد مشاهده مقاله: 19 تعداد دریافت فایل اصل مقاله: 44 |