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ABSTRACT: 
There are relatively few literatures about Flexible AC Transmission Systems (FACTS) in reliability aspects, 
particularly in composite system reliability evaluation. Reliability of the power system could be studied by some 
indices that help to compare power system under different conditions from reliability point of view. The actual 
benefits of the FACTS can be quantitatively estimated using suitable models and techniques. Corrective control as an 
alternative for the system reinforcement is proposed in this paper as a suitable way to ease the challenges related to 
building new transmission lines or reconstruction of power grid. Static Var Compensator (SVC) as a member of 
FACTS family has been used as corrective control. A test case with three scenarios is considered for comparing the 
effect of SVC on the reliability of the power system. It will be seen that the correct SVC replacement has a great 
influence on the reliability indices of power grid and losses could be diminished. 
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1. INTRODUCTION 
Growing societies and industries lead to very high 
demands which highly affect the power system security 
and reliability. Though, building new transmission lines 
can relieve this severe situation, it is hard to be 
implemented due to various limitations such as right-
of-way and cost. However, the costs of building new 
transmission lines are very high. Furthermore the land 
on which to construct new lines is rather limited and 
the situation has mixed up with growing concerns about 
environmental impacts of any new lines. Thus, the 
application of traditional network reinforcement 
schemes is becoming more and more challenging not 
only economically but politically as well. 
Corrective control as an alternative to the system 
reinforcement is proposed in this paper as one way to 
by-pass the challenges mentioned above. The system 
operation based on the corrective control requires a 
fundamental change of the current system operation 
philosophy based on the preventive control [1]. 
Thyristor Controlled Series Capacitors (TCSC) and 
Unified Power Flow Controllers (UPFC) are the 
members of FACTS family which is used as power 
flow controller for a wide range of applications. The 
reliability impacts of incorporating these two devices in 
power transmission systems are presented in [2], [3]. 

The trust in the applications of FACTS members to 
power systems has based on their ability to improve the 
system security such as transient stability, voltage 
stability and oscillations damping. Less attention has 
been paid to the impacts of these components on the 
system reliability. The SVC and Thyristor Controlled 
Phase Angle Regulator (TCPAR) are two members of 
FACTS. The SVC can provide the system with reactive 
power and regulate the voltage. The TCPAR can alter 
the phase shift angle to control the power flow pattern. 
These two components can benefit the system 
operation in voltage control and oscillations damping 
and reliability [4], [5]. 
By implementation of the corrective control, the power 
systems are able to accommodate growing loads by 
utilizing the system margin which should be reserved 
under the traditional preventive control. The prevailing 
“N-1” rule is challenged under corrective control. For 
example, the transmission line may be pushed to its 
limit under corrective control, the power transmitted is 
right at the threshold where the line can operate in a 
stable mode, whereas under preventive control “N-1” 
rule should be maintained which requires a large 
capacity of the line to be reserved. Instead of building 
new transmission lines, the control systems will be 
built to exploit the reserved capacity inherent in the 
planned systems under the “N-1” rule. In this way, the 
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prohibitive cost of building transmission lines is 
replaced by the relatively low cost of implemented 
corrective control systems. However, the effect of 
corrective control on the system risk is still unknown. 
Many questions have yet to be addressed such as:  
1) How will different penetration levels of corrective 
control affect the system risk? 
 2) How will different reliability profiles of corrective 
control devices affect the system risks? 
3) What is the optimal level of corrective control in 
terms of costs and benefits? 
 4) Is it preferable to implement corrective control to 
reinforce the network in the traditional way, in terms of 
cost and benefit? 
These questions should be thoroughly investigated 
before the final strategy of system development is 
decided. This paper studies SVC replacement based on 
the corrective control and reliability indices of the 
power system accordingly. 
 
2. CONCEPT AND MODEL 
2.1. The Concept of Corrective Control 
Corrective control, as the term suggests, aims to correct 
the system violations after they have occurred, whereas 
preventive control aims to prevent violations from 
occurring by providing enough security margins in 
advance. The term corrective control has different 
scopes in the literature. In the widest scope, the 
traditional means of system management such a: fast 
spinning reserve, ready reserve, generation re-dispatch 
and load shedding are all classified as means of 
corrective control since they all “correct” the problem 
after it occurs, although some require significant time 
to perform (the ramp up of generations) or are very 
costly (such as load shedding).Corrective switching is a 
fast and economical means of corrective control action, 
aiming at reducing losses, relieving overload problems 
and solving voltage problems. The impact it has on 
system reliability is not in a definite direction, 
depending on the individual case.  
FACTS, as a means of corrective control, provide fast 
and intelligent control of the power system. FACTS, 
which are power electronics-based devices, can change 
parameters like impedance, voltage and phase angle. 
Therefore they have the ability to control power flow 
pattern and enhance the usable capacity of the existing 
lines. The most prominent feature of FACTS is that 
they can vary the parameters rapidly and continuously, 
which will allow a rather desirable control of the 
system operation. 
Transmission networks Researchers has paid attention 
to the effects of FACTS devices on the system security 
such as transient stability, voltage stability and 
oscillations damping. Less attention has been paid to 
the impacts of these components on the system 
reliability. The SVC as shunt reactive compensation is 

modeled for reliability studies purpose. 
 
2.2. Structure and Operation of SVC 
SVC has been used in transmission systems since the 
1970s. This paper aims to show the provided support 
by SVCs during system contingencies and also the 
availability and reliability issues necessary to address 
in order to secure the SVC operability when called 
upon to. Some SVCs have been in operation for over 
20 years while others have only three years in service. 
The typical transmission SVC is a Vernier controlled 
device consisting of applicable combinations of 
Thyristor Switched Capacitor banks (TSC), Thyristor 
Controlled Reactors (TCR) and fixed filter banks as 
required. The reactive branches are connected to a MV 
bus and connected to the transmission voltage level 
through a step up transformer. There are also discretely 
controlled SVCs consisting solely of TSC branches or 
of Thyristor Switched Reactors (TSR) and TSC 
branches in combination. Both types are depicted in 
figure 1 but it should be said that the latter type is not 
as common as the Vernier controlled device even 
though there are a decisive number of discretely 
controlled SVCs in operation worldwide [6]. 
 

 
Fig. 1. A basic TSC-TCR type SVC 

 
Fig. 1 is the schematic diagram of a typical SVC which 
has TSC and TCR. In practice, the numbers of TSC and 
TCR are decided by many factors such as maximum 
reactive power output and current rating of the thyristor 
valves. It implies that we can add more TCRs to 
increase the inductive reactive power range. Under the 
control of the thyristor valves, the output of the SVC 
can vary from the maximum inductive to maximum 
capacitive power rapidly and continuously. 
 
2.3. Reliability Model of SVC 
A TSC-TCR type SVC consists of a certain number of 
TSCs and TCRs. We are mainly concerned with the 
failures of these components, which are in parallel. To 
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set up the reliability model of the SVC, we make the 
following assumptions: 
After a TSC or TCR fails, it will be isolated by a 
bypass breaker. Therefore other normal components 
can still work. If all the TSCs and TCRs of the SVC 
fail, the SVC will be simply disconnected by a bypass 
breaker from the transmission line with which the SVC 
is in parallel. Here to simplify the matter, we just give 
an example of an SVC with a TSC and a TCR. The 
state-space model of the SVC is shown in the figure 
below: 
 

 
Fig. 2. Reliability model of SVC (a TSC and a TCR) 
 
In Fig. 2, 1 and 2 states stand for the TSC and TCR 
respectively. Suppose the TSC has a limit of 5 MVAR 
capacitive power and the TCR can consume as much as 
5 MVAR power. Hence in state 1 where both the TSC 
and TCR are at work the SVC can either absorb or 
generate reactive power and the range is [-5 , 5] 
MVAR. In state 2, the TCR is down and isolated by a 
bypass breaker from the rest of the SVC. However, the 
SVC still can provide [0 , 5] MVAR, which controls 
the available TSC. State 3 is similar to state 2. The 
difference is that the SVC now can only absorb reactive 
power because only the TCR is available. In state 4 
both the TSC and TCR are down and The SVC has no 
effect. 
We can get the Probability (Pi) of each state based on 
Figure 2 as follows: 

 
ଵܲ ൌ ఓభఓమ

ሺభାఓభሻሺమାఓమሻ
                                                      (1) 

 

ଶܲ ൌ ఓభమ
ሺభାఓభሻሺమାఓమሻ

                                                      (2) 
 

ଷܲ ൌ ఓమభ
ሺభାఓభሻሺమାఓమሻ

                                                      (3) 
 

ସܲ ൌ ఒభమ
ሺభାఓభሻሺమାఓమሻ

                                                      (4) 
 

λ1, λ2 stand for Failure rates of the TSC and TCR 
respectively, And µ1, µ2 are their repair rates. With 
regard to the other types of SVC, we can follow the 
same method to build their reliability models [6-8]. In 
Table 1 Reliability Data of a SVC is presented: 
 

Table1. Reliability Data of a SVC 
Device Failure rate (1/ yr) Repair rate (1/yr) 

TSC 0.0005 0.0210 

TCR 0.0005 0.0210 
 
3. POWER SYSTEM RELIABILITY  
The power system reliability is one of the features of 
power system quality in addition to the required voltage 
and constant frequency. The electric utility industry has 
developed several performance measures of reliability 
or reliability indices. These reliability indices include 
measures of outage duration, frequency of outage, 
number or customers involved or their lost power or 
energy and the response time. The Institute of 
Electrical and Electronic Engineers (IEEE) defines the 
generally accepted reliability indices in its standard 
number. This standard lists several important 
definitions for reliability, including what are 
momentary interruptions, momentary interruption 
events and sustained interruptions.  
 The standard distribution and transmission reliability 
indices and factors that affect their calculation are 
collected and presented. The indices are intended to be 
applied to the power distribution and transmission 
systems, substations, circuits, and defined regions. 
Some of the standard distribution and transmission 
reliability indices are presented. 
 
3.1. System Average Interruption Frequency Index 
(SAIFI): 
The SAIFI means that how often the average customer 
experiences a sustained interruption over a predefined 
period of time, usually a year. 

 
SAIFIൌ ሺ୲୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭ ୡ୳ୱ୲୭୫ୣ୰ ୧୬୲ୣ୰୰୳୮୲୧୭୬ୱ 

௧௧ ௨  ௨௦௧௦ ௦௩ௗ
ሻ 

 
SAIFIൌ ሺ∑ ܰ


ୀଵ ሻ/்ܰ                                                (5) 

 
Where the sum is taken over all events (i), Eitherat all 
voltage levels or only at selected ones. Ni is the number 
of customers interrupted by each incident i. NT is the 
total number of customers in the system for which the 
index is calculated. SAIFI can also be measured by the 
mean time between failure (MTBF), which is the 
reciprocal value of the failure rate λ. 
SAIFI typical value is mostly between one and two 
sustained interruptions per year. The value depends on 
the system configuration and is higher for the radial 
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configuration, smaller for the underground residential, 
and the smallest for the grid network. 

 
3.2. System Average Interruption Duration Index 
(SAIDI): 
SAIDI indicates the total duration of interruption for 
the average customer during a predefined period of 
time. It is usually measured in customer-minutes or 
customer hours of interruption. 

 
SAIDIൌ ௦௨  ௨௦௧ ௧௨௧ ௗ௨௧௦

௧௧ ௨  ௨௦௧௦
 

 
SAIDIൌ ሺ∑ ܰ


ୀଵ .  ሻ/்ܰ                                       (6)ݎ

 
Where ri is the restoration time for each interruption (i). 
Typical values of SAIDI are between 1.5 and 3 h per 
year. 

 
3.3. Customer Average Interruption Frequency 
Index (CAIFI): 
CAIFI gives the average frequency of the sustained 
interruptions for those customers who experience 
sustained interruptions. The customer is counted once 
regardless of the number of times interrupted for this 
calculation. Like SAIFI, it is usually expressed in 
interruptions per customer per year. 

 

CAIFI ൌ ሺ
total number of customer interruptions
݀݁ݐ݂݂ܿ݁ܽ ݏݎ݁݉ݐݏݑܿ ݂ ݎܾ݁݉ݑ݊ ݈ܽݐݐ ሻ 

 
CAIFI ൌ ሺ∑ Ni

ୀଵ ሻ/Nc                                               (7) 
 

Where Nc is the total number of customers that have 
experienced at least one interruption during the 
reporting period. 
This index differs from SAIFI only in the value of the 
denominator. It is particularly useful when a given 
calendar year is compared with other calendar years 
since, in any given calendar year, not all customers will 
be affected and many will experience complete 
continuity of supply.  
The value of CAIFI therefore is very useful in 
recognizing chronological trends in the reliability of a 
particular distribution system. In the application of this 
index, the affected customers should be counted only 
once, regardless of the number of interruptions they 
may have experienced in the year. 

 
3.4. Energy Not Supplied (ENS): 
ENS gives the total amount of energy that would have 
been supplied to the interrupted customers if there 
would not have been any interruption. It is usually 
expressed in MWh. 

 
ENS ൌ ∑ Pi

ୀଵ . Ri ൌ ∑ Ei
ୀଵ                                       (8) 

Where Pi is the average load interrupted by each 
interruption (i) and Ei is the energy not supplied 
because of each interruption (i). 

 
3.5. Average Energy Not Supplied (AENS): 
The AENS index indicates how much energy on 
average was not served to the customers during a 
predefined period of time. It is usually expressed in 
MWh. 
 
AENSൌ ሺ∑ Pi

ୀଵ . riሻ/ሺ∑ Ni
ୀଵ )                                 (9) 

 
3.6. Customer Average Interruption Duration Index 
(CAIDI): 
The CAIDI represents the average time required to 
restore service. It is expressed in units of time per 
interruption, usually in minutes per interruption. From 
customer point of view, it is closely related to the term 
mean time to restore or mean time to repair (MTTR). 

 
CAIDIൌ ௦௨  ௨௦௧ ௧௨௧ ௗ௨௧௦

௧௧ ௨  ௨௦௧௦ ௧௨௧
 

 
CAIDIൌ ሺ∑ Ni

ୀଵ . riሻ/ሺ∑ Ni
ୀଵ )                             (10) 

 
The value of CAIDI depends on the system 
configuration and is lower for the radial configuration, 
higher for the underground residential, and the highest 
for the grid network. 

 
3.7. Average Service Availability Index (ASIA): 
The ASAI represents the fraction of time that a 
customer has received power during the defined 
reporting period. 

 
ASAI ൌ ௨௦௧ ௨௦  ௩ ௦௩

௨௦௧ ௨௦ ௗௗௗ
 

 
ASAI ൌ 1 െ ሼሺ∑ ܰ


ୀଵ .  ሻ/ሺ்ܰ . Tሻ}                      (11)ݎ

 
Where T is the time interval (8.760 or 8.784 h in a leap 
year).Another way of looking at ASAI on the annual 
basis is defined by SAIDI, whereSAIDI is expressed in 
hours. 
 
ASAI ൌ (T-SAIDI)/T                                                (12) 

 
3.8. Average Customer Curtailment Index (ACCI): 
The ACCI indicates how much energy on average was 
not served to the interruptedcustomers during a 
predefined period of time. It is usually expressed in 
MWh. 

 
ACCI ൌ ሺ∑ Pi

ୀଵ . riሻ/ሺ∑ Ni
ୀଵ )                               (13) 

 
This index differs from the AENS in the same way that 
the CAIFI differs from the SAIFI. It is therefore a 
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10 0.14459 0.14459 0.448 3.1 0.999949 5.11702E-05 23.345 0.002 0.023 0.122 5.218 

11 0.140327 0.140327 0.439 3.125 0.99995 5.00665E-05 22.841 0.002 0.023 0.119 5.224 

12 0.141134 0.141134 0.439 3.114 0.99995 5.01666E-05 22.887 0.002 0.023 0.12 5.228 

13 0.14459 0.14459 0.448 3.1 0.999949 5.11718E-05 23.346 0.002 0.023 0.122 5.217 
 

Table 3. Power Flow Results For 1&2Scenarios 
Power 
Flow 

Load 
[MW] 

Load 
[Mvar] 

Comp 
[Mvar] 

External 
[MW]      

External 
[Mvar]     

Total 
Loss 

[MW]     

Total 
Loss 

[Mvar]    

Load 
Loss 

[MW]    

Load 
Loss 

[Mvar] 

No load 
Loss 

[MW]    

No load 
Loss 

[Mvar] 
Cases 

1 52.08 9.71 0 52.2 12.53 0.12 2.82 0.12 1.36 0 1.47 

2 52.08 9.71 1.22 52.2 11.31 0.12 2.82 0.12 1.36 0 1.47 

3 52.08 9.71 8.07 52.21 4.47 0.13 2.83 0.13 1.37 0 1.47 

4 52.08 9.71 8.07 52.21 4.47 0.13 2.83 0.13 1.37 0 1.47 

5 52.08 9.71 3.63 52.2 8.88 0.12 2.81 0.12 1.34 0 1.47 

6 52.08 9.71 2.1 52.2 10.43 0.12 2.83 0.12 1.36 0 1.47 
7 52.08 9.71 2.43 52.2 10.1 0.12 2.83 0.12 1.36 0 1.47 

8 52.08 9.71 2.35 52.2 10.18 0.12 2.82 0.12 1.35 0 1.47 

9 52.08 9.71 3.13 52.2 9.4 0.12 2.83 0.12 1.36 0 1.47 

10 52.08 9.71 2.9 52.2 9.63 0.12 2.83 0.12 1.36 0 1.47 

11 52.08 9.71 2.94 52.2 9.59 0.12 2.82 0.12 1.35 0 1.47 

12 52.08 9.71 2.21 52.2 10.31 0.12 2.82 0.12 1.35 0 1.47 

13 52.08 9.71 3.8 52.2 8.71 0.12 2.8 0.12 1.34 0 1.47 

 
Table 4. Reliability indices for 1, 2, 3 cases of Third scenario 

Indice
s 

SAIFI CAIFI SAIDI CAIDI ASAI ASUI ENS AENS ACCI EIC IEAR 

Cases 
1 0.138119 0.138119 0.434 3.143 0.999950448 4.95521E-05 22.60

7 
0.002 0.023 0.118 5.228 

2 0.139271 0.139271 0.436 3.13 0.999950235 4.97649E-05 22.70
4 

0.002 0.023 0.119 5.224 

3 0.143304 0.143304 0.446 3.113 0.99994907 5.09305E-05 23.23
6 

0.002 0.023 0.121 5.218 

 
Table 5. Power flow results for 1, 2, 3 cases of Third scenario 

Power 
Flow 
 
Cases 

Load 
[MW] 

Load 
[Mvar] 

Comp 
[Mvar] 

External 
[MW] 

External 
[Mvar] 

Total 
Loss 
[MW

] 

Total 
Loss 

[Mvar] 

Load 
Loss 

[MW] 

Load 
Loss 

[Mvar] 

No load 
Loss 

[Mvar] 
 

1 52.08 9.71 9.29 52.21 3.25 0.13 2.83 0.13 1.37 1.47 

2 52.08 9.71 6.06 52.2 6.45 0.12 2.81 0.12 1.34 1.47 

3 52.08 9.71 6.74 52.2 5.77 0.12 2.8 0.12 1.33 1.48 

 
5. CONCLUSION 
In order to know how the FACTS devices could change 
reliability indices, a distribution network has been 
studied by locating the SVC at different buses using 
three scenarios. From reliability point of view, it has 
been figured out that some buses have more advantages 
for the SVC replacement and are also better for power 
flow and less losses. The case has been repeated using 

two SVCs, rather than one and results enhanced. In the 
third case, it could be seen that although the SAIDI 
increased which is not suitable from reliability point of 
view, the CAIDI and interrupted energy assessment 
rate(IEAR) decreased which means customers endure 
lower prices for interrupted energy.The IEAR could be 
assumed as the most important parameter of reliability, 
because it is related to the cost. Finally, it could be 
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concluded that in the third case, reliability indices and 
system losses. However reliability increase mostly 
needs more costs and capitals and based on the 
importance of the project decision making process will 
be finalized. 
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