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ABSTRACT: 

Penetration of distributed generation resources including wind power and solar photovoltaic units in distribution 

system has been increased, and it is important to examine their impact on the distribution systems’ operation in term of 

reliability. In this paper, the multi-objective dynamic feeder reconfiguration is introduced as an efficient approach for 

providing an energy management schedule in the distribution grid considering energy loss and energy not supplied as 

the objective functions in the presence of renewable energy sources and capacitor units. In addition, the effect of 

uncertainty related to power demand is considered in the evaluations. To this end, an enhanced particle swarm 

optimization algorithm is provided in this paper, the proposed approach is applied to the 33-node testing system. 
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1. INTRODUCTION 

Emerging of Distributed Generators (DGs) 

including solar photovoltaic (PV) units and wind turbine 

in the distribution grids has completely changed the 

networks’ performance [1]. The merge of distributed 

generators and Battery Energy Storage (BES) units into 

distribution grid provides various benefits such as 

improved voltage characteristics, reduced line losses 

and enhanced branch current profile. Accordingly, 

frequent transfer of power from DGs and BES units can 

significantly reduce their lifetime and capability [2]. So 

an optimal energy management scheme can improve the 

distribution system performance and protect these units 

from destruction. 

Many recent researches have been done to obtain an 

optimal energy management schedule in the 

distribution grid considering DGs, BES units and 

electrical vehicles with various purposes including 

reducing the power loss [3] and minimizing the 

network operational cost [4]. A multi-objective energy 

management was presented in the distribution grid at 

the presence of energy storage units [5]. A new bi-

objective approach was provided for energy 

management in the distribution grid considering energy 

storage units [6]. In [7], a new energy management 

approach was provided in the distribution grid 

considering effects of DGs and BES units to modify the 

peak load shaving and voltage regulation. A new 

energy management pattern was presented in the 

distribution system in the presence of large scale DGs 

to minimize the operational cost [8]. In [9], an adaptive 

energy management approach was provided in the 

distribution system integrated with micro-grid. A new 

energy management pattern based on driving pattern 

recognition was presented in the hybrid distribution 

system integrated with electrical vehicles [10].  

One of the most common energy schedule approach 

in the automation distribution grids, feeder 

reconfiguration is performed on the distribution grids 

considering DGs. The reconfiguration process concept 

is altering the distribution feeders structure for 

optimizing the certain objectives such as power loss 

and operational cost while satisfying an operational and 

physical limitations [11]. Distribution Feeder 

Reconfiguration (DFR) is implemented by changing the 

status of switches in a distribution grid to search a 

radial operating configuration without isolating any 

part of network [11]. In term of reliability importance, 

a gravitational search algorithm was provided for 

solving DFR problem with DGs to minimize the energy 

not supplied [12]. A hybrid evolutionary algorithm 

including Particle Swarm Optimization (PSO) and 

modified shuffled frog leaping was provided for DFR 

problem considering effect of DGs to enhance the 

network security [13]. According to grid’s cost 

importance, a hybrid evolutionary algorithm consisting 
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particle swarm optimization and Shuffled Frog Leaping 

Algorithm (SFLA) was presented [14] to solve the 

Dynamic Distribution Feeder Reconfiguration (DDFR) 

problem with DGs for operational cost minimization. In 

[15], a genetic algorithm was provided to solve the 

DDFR problem in the unbalanced distribution grid 

considering DGs to minimize the network loss. In [16], 

an ant colony optimization algorithm was introduced 

for DDFR problem and capacitor switching considering 

DGs to minimize the network loss. 

The main challenge in this study is providing 

energy management schedule based on using the 

DDFR approach in the distribution grid considering 

renewable energy sources and capacitor units. Different 

objective functions including energy not supplied and 

energy loss are considered in this study. Optimization 

decision variables in the dynamic approach include 

capacitors’ reactive power output, active power 

generation of DGs and optimal status of network 

switches. Solving the DDFR problem in the distribution 

network is very complicated for providing an optimal 

energy management schedule and it becomes more 

sophisticated by considering the impact of power 

demand’s uncertainty. Therefore, it is necessary to 

provide a robust method that can deal with the DDFR 

problem. Toward this end, an Enhanced Particle Swarm 

Optimization (EPSO) algorithm is presented to handle 

the complexities of the DDFR problem. The PSO 

algorithm has some weaknesses including trapping in 

local optima due to its random nature. To this end, a 

novel mutation strategy is presented in EPSO algorithm 

to increase the search ability and population diversity 

of the algorithm. Since the two different objective 

functions (energy loss and energy not supplied) conflict 

with each other in the DDFR optimization problem, it 

is necessary to find an approach for optimizing all 

objectives. In this regard, the Pareto-method is 

presented for obtaining set of non-dominated solutions.  

The outstanding features of this study are as 

follows: 

 presenting the energy management schedule 

by solving the DDFR problem in the 

distribution network. 

 Presenting energy not supplied (ENS) function 

in order to enhance distribution system 

reliability. 

 Considering the power demand’s uncertainty 

to evaluate the objective functions. 

 Considering the effects of DGs and capacitors 

on different objective functions. 

 Presenting a novel evolutionary algorithm, 

EPSO for solving the multi-objective problem. 

The rest of paper is provided as follows: Section II 

describes problem formulation including objectives and 

constraints. Section III presents EPSO algorithm and 

multi-objective optimization strategy. Sections IV and 

V present the EPSO algorithm’s steps for solving the 

DDFR problem and simulation result, respectively. 

Sections VI and VII present conclusions and 

references, respectively. 

 

2. PROBLEM DEFINITION 

A literature survey on the energy management 

schedule in the distribution grid demonstrated that most 

studies have considered various objective including 

power loss [2-3], operation cost [1-2], [4-6] ,[8], peak 

shaving [7], reliability index [6] and grid's security 

index [1], [5]. As well as some constraints of the 

optimization problem were load flow equations, bus 

voltage, current feeder, DGs power generation and 

energy storage units’ limitations [1-8]. Considering the 

mentioned objective functions for providing energy 

management schedule leads to distribution grid 

operation at an acceptable level of reliability and 

security. Moreover, the subscribers' blackout time is 

reduced and they pay less for electricity demand.  

In order to provide energy management schedule, 

the Dynamic Distribution Feeder Reconfiguration 

(DDFR) problem at the presence of renewable energy 

sources and capacitor units is formulated in this 

section. Energy Not Supplied (ENS) and energy loss 

are defined as objective functions of the DDFR 

problem. Another important point is to consider the 

effect of power demand’s uncertainty on the evaluation 

of objective functions. In most studies [1-10], this issue 

has not been addressed for energy management in the 

distribution network. Considering the power demand’s 

uncertainty in solving the considered optimization 

problem leads to provide near-realistic solutions. In the 

following, this section is divided to three sub-sections; 

objective functions, constraints and uncertainty 

modeling. 
 

A. Objective functions 

Two objective functions and decision variables in 

the proposed optimization problem are as follows:  

 Energy loss 

 The minimization of the energy loss can be 

calculated as follows [14]: 

 

𝑓1(𝑋) = ∑ ∑ 𝑅𝑗|𝐼𝑗
ℎ|
2

𝑁𝑏𝑟𝑐ℎ

𝑗=1

24

ℎ=1

 (1) 

𝑋 = [𝑄𝐶𝑎𝑝‚𝑃𝐷𝑔‚𝑇𝑖𝑒. 𝑆𝑊]  (2) 

𝑄𝐶𝑎𝑝 = [𝑄𝐶𝑎𝑝1
ℎ ‚𝑄𝐶𝑎𝑝2

ℎ ‚ … . 𝑄𝐶𝑎𝑝𝑁𝐶𝑎𝑝
ℎ ]  (3) 

𝑃𝐷𝑔 = [𝑃𝐷𝑔1
ℎ ‚𝑃𝐷𝑔2

ℎ ‚ … . 𝑃𝐷𝑔𝑁𝐷𝑔
ℎ ] (4) 

𝑇𝑖𝑒 = [𝑇𝑖𝑒1
ℎ‚𝑇𝑖𝑒2

ℎ‚ … . 𝑇𝑖𝑒𝑁𝑡𝑖𝑒
ℎ ]  (5) 

𝑆𝑊 = [𝑆𝑊1
ℎ‚𝑆𝑊2

ℎ‚ … . 𝑆𝑊𝑁𝑆𝑊
ℎ ]  (6) 

 

Where, 𝑅𝑗 and 𝐼𝑗
ℎ are the resistance and current of 

the 𝑗𝑡ℎ line at ℎ𝑡ℎ hour, respectively. 𝑁𝑏𝑟𝑐ℎ is the 
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number of lines (branches of distribution grid), X is the 

vector of control variables, 𝑇𝑖𝑒𝑖
ℎ is the state of 𝑖𝑡ℎ tie 

switch at the ℎ𝑡ℎ hour and 𝑆𝑊𝑖
ℎ is the sectionalizing 

switch number that forms a loop with 𝑇𝑖𝑒𝑖
ℎ . 𝑁𝑡𝑖𝑒 and 

𝑁𝑆𝑊 are the number of tie switches and number of 

switches, respectively. 𝑄𝐶𝑎𝑝‚𝑟
ℎ  and 𝑃𝐷𝑔‚𝑢

ℎ  are the reactive 

power of 𝑟𝑡ℎ capacitor and active power of 𝑢𝑡ℎ DG at 

the ℎ𝑡ℎ hour, respectively. 

 

 Energy Not Supplied 

Energy Not Supplied (ENS) is an important 

reliability indicator that indicates the total energy load 

not distributed during outage [17]. ENS formulation at 

each node is as follows:  
 

𝐸𝑁𝑆𝑥 = 𝑃𝑥 ∑ (𝑈𝑥‚𝑦
𝑥‚𝑦∈𝑍‚ 𝑥≠𝑦

+ 𝑈𝑥‚𝑦
 ) 

(7) 

𝑈𝑥‚𝑦 = 𝐾𝑥‚𝑦 × 𝑡𝑥‚𝑦 (8) 

𝑈𝑥‚𝑦
 = 𝐾𝑥‚𝑦 × 𝑡𝑥‚𝑦

  (9) 

 

Where, 𝑍 includes branches of network which are 

connected to 𝑥𝑡ℎ node. 𝑈𝑥‚𝑦  and 𝑈𝑥‚𝑦
  are the service 

unavailability related to the reparation time of all line 

associated with 𝑥𝑡ℎ node and service unavailability 

related to the restoration time of all line associated with 

𝑥𝑡ℎ node, respectively. Moreover, 𝐾𝑥‚𝑦  is the failure 

rate of the line between 𝑥𝑡ℎ 𝑎𝑛𝑑 𝑦𝑡ℎ nodes (𝑓𝑎𝑖𝑙/

𝑦𝑒𝑎𝑟), 𝑡𝑖‚𝑗 and  𝑡𝑖‚𝑗
  are the average reparation time and 

restoration time of the line between 𝑥𝑡ℎ 𝑎𝑛𝑑 𝑦𝑡ℎ nodes 

(ℎ/𝑓𝑎𝑖𝑙). The ENS index can be mathematically 

modeled as follows: 
 

𝑓2(𝑥) = ∑ 𝐸𝑁𝑆𝑖

𝑁𝐵𝑢𝑠

𝑖=2

 
(10) 

 

B. Constraints 

In this section, all equality and inequality 

constraints of the proposed problem are described. 

Equations (11) -(12) are related to radial structure of 

network and load flow equation, respectively. 

Equations (13) -(14) are related to bus voltage and 

current feeder, respectively. Finally, (15)- (16) are 

related to DGs power generation and capacitor 

limitation, respectively. 

 

𝑁𝑏𝑟𝑎𝑛𝑐ℎ = 𝑁𝑏𝑢𝑠 − 𝑁𝑠𝑢𝑏 
(11) 

𝑆𝑗 = ∑ 𝑉𝑗𝑉𝑘𝑌𝑗𝑘 𝑐𝑜𝑠(𝜕𝑗 − 𝜕𝑘 − Ө𝑗𝑘)

𝑁𝑏𝑢𝑠

𝑘=1

 
(12) 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑗 ≤ 𝑉𝑚𝑎𝑥    𝑖 = 1‚2‚ … ‚𝑁𝐵𝑢𝑠 (13) 

|𝐼𝑓𝑑𝑟‚𝑗| ≤ 𝐼𝑓𝑑𝑟‚𝑗
𝑀𝑎𝑥      𝑖 = 1‚2‚ … ‚𝑁𝑓𝑒𝑒𝑑𝑒𝑟  

(14) 

𝑃𝑑𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑑𝑔‚𝑗 ≤ 𝑃𝑑𝑔

𝑚𝑎𝑥 
(15) 

𝑄𝑐𝑎𝑝
𝑚𝑖𝑛 ≤ 𝑄𝑐𝑎𝑝‚𝑗 ≤ 𝑄𝑐𝑎𝑝

𝑚𝑎𝑥 
(16) 

 

Where, 𝑁𝑏𝑢𝑠 and 𝑁𝑠𝑢𝑏 are the number of buses and 

number of sub-stations. 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥  are the lower 

and upper bounds of voltage at the 𝑗𝑡ℎ node, 𝑉𝑗  is the 

voltage magnitude at the 𝑖𝑡ℎ bus. 𝐼𝑓𝑑𝑟‚𝑗  is the current 

amplitude and 𝐼𝑓𝑑𝑟‚𝑗
𝑀𝑎𝑥  is the maximum acceptable current 

of the 𝑗𝑡ℎ feeder. 𝑁𝑓𝑒𝑒𝑑𝑒𝑟  indicates the number of 

feeders. 𝑆𝑗 is the net injected power at the 𝑗𝑡ℎ bus. 𝑉𝑗 

and 𝜕𝑗 are the magnitude and angle of voltage at 𝑗𝑡ℎ 

bus, 𝑌𝑗𝑘 and Ө𝑗𝑘 are the magnitude and angle of 

admittance between 𝑗𝑡ℎ and 𝑘𝑡ℎ buses, respectively. 

𝑄𝑐𝑎𝑝
𝑚𝑖𝑛

 , 𝑄𝑐𝑎𝑝
𝑚𝑎𝑥

 are the lower and upper bounds of the 

reactive power at the 𝑗𝑡ℎ capacitor. 𝑃𝑑𝑔
𝑚𝑖𝑛 , 𝑃𝑑𝑔

𝑚𝑖𝑛  are the 

lower and upper limitations of the active power at the 

𝑗𝑡ℎ DG, respectively. 

 

C. Uncertainty Modeling 

In this study, power demand is considered as the 

uncertainty parameter in the optimization problem 

assessment which is developed as following: 

 Power demand modeling 

Normal distribution is commonly used to express 

the random loads of a distribution networks. The 

Probability Density Function (PDF) of the normal 

probability distribution can be expressed as: 

 

𝑓(𝑥) =
1

𝜕√2𝜋
 𝑒
−
(𝑥−𝜇)2

2𝜕2                                                 (17) 

 

Where, 𝜕 and 𝜇 are the mean value and standard 

deviation value of random variable, respectively. In this 

approach the scenario generation strategy [18] is 

utilized to model the uncertainty of power demand. 

Toward this end, many different scenarios are 

generated from the aforementioned PDFs. Then the 

backward reduction approach [19] is implemented in 

order to extract different scenarios with high 

probability. 

 

3. OPTIMIZATION APPROACH 

In this section, multi-objective strategy and 

Enhanced Particle Swarm Optimization (EPSO) are 

introduced: 

    

A. Multi-objective optimization strategy 

In solving the multi-objective problem, there are 

non-dominated solutions instead of optimal solution 

[13]. The solution 𝑋2 dominated solution 𝑋1 if the 

conditions are satisfied: 
 

∀𝑘 ∈ {1‚2‚ …𝑁𝑜𝑏𝑗}‚   𝑓𝑘(𝑋1) ≤ 𝑓𝑘(𝑋2)  (18) 

∃ℎ ∈ {1‚2‚ …𝑁𝑜𝑏𝑗}‚   𝑓ℎ(𝑋1) < 𝑓ℎ(𝑋2) (19) 
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According to the objectives, values are different, so 

fuzzy sets are implemented for substituting each 

objective value between 0 and 1. In this regard, the 

fuzzy membership function   for 𝑗𝑡ℎ objective function 

[14] can be modeled as follows: 

 
μj(𝑋)

=

{
 
 

 
 

1                                                 fj ≤ fj
min

0                                                fj ≥ fj
max

fj
max − fj

fj
max − fj

min
                                fj

min  ≤  fj ≤ fj
max

 
(20) 

 

Where, 𝑓𝑗
𝑚𝑖𝑛 and 𝑓𝑗

𝑚𝑎𝑥 are maximum and minimum 

bounds of the 𝑗𝑡ℎ objective function. The non-

dominated solutions are stored in a repository at each 

iteration, these solutions are sorted based on decision 

maker by using (21) to select the best compromise 

solution among the top solutions in the repository. 

, 

Nμr =
∑ βk × μrk
n
k=1

∑ ∑ βk × μrk
n
k=1

m
r=1

 (21) 

 

Where m and n are the number of non-dominant 

solutions and objectives and 𝛽𝑘 is weight of 𝑘𝑡ℎ 

objective function.  

 

B. Enhanced particle swarm optimization algorithm 

The PSO algorithm is one of the evolutionary 

methods first used by Eberhart and Kennedy to solve 

various optimization problems [20]. In this algorithm, 

which was inspired by groups of birds and fishes, each 

particle is a potential solution for the optimization 

problem in which particles find the best location using 

previous experiences and the best particle in the whole 

population. More details on the matting process in PSO 

algorithm can be found in [20-21]. Mutation strategy is 

the process to improve the performance of algorithm so 

that the probability of reaching the optimal global 

solution is increased. In the EPSO algorithm unlike 

PSO, mutation strategy can improve the position of 

each particle to avoid trapping in the local optimal. A 

new position of  𝑖𝑡ℎ particle is calculated as follows:  

 

Xi‚new1
t+1 = Xi

t + r1(gb
t − 𝜎ρt),   Xi‚new2

t+1 = Xi
t +

r2∆Xi 
(22) 

∆Xi = {
r3  ∙ (Xi

t − Xk
t )   if   f(Xi

t) ≥ f(Xk
t ) 

r4 ∙ (Xk
t − Xi

t)   if   f(Xk
t ) ≤ f(Xi

t)
    i

≠ k 

(23) 

Xi‚new
t+1

= {
Xi‚new1
t+1       if    f(Xi‚new2

t+1 ) ≥ f(Xi‚new1
t+1 ) 

Xi‚new2
t+1       if    f(Xi‚new2

t+1 ) ≤ f(Xi‚new1
t+1 )

     

(24) 

 

Where, 𝑟3 and 𝑟4 are random numbers between zero 

and one, 𝜎 is a constant value that can assume 1 or 2.  

𝜌𝑡 is the average value of the position over the total 

population in the previous iteration. If the new 𝑖𝑡ℎ 

individual has a better position than 𝑖𝑡ℎ individual in 

the current population, the new vector will replace it in 

the next population, the following steps are required to 

implement the EPSO algorithm in order to solve the 

multi-objective problem. 

1. Generate initial particle with randomly position. 

2. Equations (1), (10) are used to evaluate the 

objective function. 

3. Calculate membership function using (20) for two 

objectives including energy loss and ENS. 

4. Calculate normalized membership using (21) for 

all members of population. 

5. Use Pareto optimality approach to obtain the non-

dominant solutions and store in the repository. 

6. Update the population of particles by using (22)- 

(24). 

7. Equations (1), (10) are used to evaluate the 

objective function. 

8. Calculate membership function using (20) for two 

objectives including energy loss and ENS. 

9. Calculate normalized membership using (21) for 

all members of population. 

10. Use Pareto optimality approach to obtain the non-

dominant solutions and store in the repository. 

11. Check the convergence criterion, which in this 

algorithm, is the predetermined maximum iteration 

number. 

 

4. SIMULATION RESULT 

In this section, for assessing the EPSO algorithm’s 

ability to solve the DDFR problem, a 33-nonde test 

system is introduced. Parameters of the EPSO 

algorithm are as follows: number of initial population is 

1500, maximum number of iterations is 200. All 

simulations are done in MATLAB software with core 

i5, 4GB RAM computer. 

 

A. 33-Bus Test System 

The test system consists of two-feeders, 33 buses, 37 

branches including sectionalizing- switches and tie-

switches [22]. In normal condition, all the 

sectionalizing-switches and tie switches are closed and 

opened, respectively. The 33-node test network is 

depicted in Fig.1. Two 500 kW DGs (diesel generator) 

are located at nodes # 7 and # 24, as well as three 

capacitors 100 kVAr are installed at nodes # 24, # 25 

and # 30. Fig. 2 shows the load profile during 24-hour 

for the test network, 50 scenarios are implemented in 

order to simulate the uncertainty parameter. 

 

B. Single-Objective Optimization 

Tables 1 and 2 show the optimization results for 

energy loss and ENS objective functions considering 
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DGs and capacitors, employing PSO, SFLA and EPSO 

algorithms. The best solution, mean solution, worst 

solution and standard deviation value for EPSO and 

other algorithms in 30 iterations are shown in Tables 1 

and 2.  

According to the results of Tables 1 and 2, 

obviously, the EPSO algorithm has achieved better 

results than other algorithms such as PSO and SFLA. 

The optimal values obtained by EPSO for ENS and 

energy losses using EPSO are 29245.85 kWh/year and 

$ 1950.22, respectively. These values obtained by 

EPSO for case before installing DGs and capacitors are 

equal to 53798.65 kWh/year and $ 3523.45, 

respectively. Obviously, DGs and capacitors can play a 

significant role in the reduction of energy losses and 

ENS objective functions.  

The convergence curve of energy loss optimization 

by ESGA, ICA and EPSO algorithms is depicted in Fig 

3. In accordance with Fig .3, obviously the EPSO 

algorithm converges to optimal answer earlier than 

PSO and SFLA algorithms. 

 

 
Fig. 1.  Single-line diagram of 33 bus test system. 

 

 
Fig. 2. The load profile of test system during 24-hour. 

 

 
 

Fig. 3. Convergence curve of different algorithms for 

energy loss optimization. 

 
Fig. 4. Pareto-front objective functions using EPSO 

algorithm. 

 

Table 1. Results obtained by optimizing the energy 

loss considering DGs and capacitors. 
Method Best  Mean  Worst   STD 

PSO  2097.199 2145.42 2185.231 37.51 

SFLA 2019.676 2060.05 2095.159 28.45 

EPSO 1950.256 1965.819 1995.347 20.85 

 

Table 2. Results obtained by optimizing the ENS 

considering DGs and capacitors. 

Method Best  Mean  Worst   STD 

PSO  29732.09 29818.87 29915.33 56.13 

SFLA 29456.96 29539.34 29635. 95 49.71 

EPSO 29245.85 29314.93 29392.96 44.33 

 

 
Fig. 5. Active power output of DGs obtained from the 

EPSO algorithm for solving the multi-objective 

optimization problem. 

 

 
 

Fig. 6. Reactive power output of capacitors obtained 

from the EPSO algorithm for solving the multi-

objective optimization problem. 
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C. Multi-Objective optimization 

Since the main purpose of this study is solving the 

two-objective DDFR problem, in this section, the 

Pareto-approach is utilized to satisfy different objective 

functions.  Fig. 4 depicts the non-dominated solutions 

for two-objective DDFR problem employing the EPSO 

algorithm. Moreover, the optimal scheduling of DGs’ 

active power output, capacitors’ reactive power output 

and optimal switching scheme obtained by EPSO 

algorithm for solving multi-objective DDFR problem 

during 24-hour are shown in Figs. 5, 6 and Table 3. 

According to Fig. 4, the optimal values of ENS and 

energy loss in the Pareto-front are 1955.45 kWh and 

29286.45 kWh/year, respectively. These values for the 

best-compromise solution (i.e., indicated with the red 

color) are equal to 1991.45 kWh and 29425.15 

kWh/year, respectively. According to Fig. 4, obviously, 

the difference between these values for each objective 

function in the best-compromise solution is less than 

2% in comparison with optimal values of each 

objective, which shows the effectiveness of the EPSO 

algorithm for solving the two-objective DDFR 

problem. 

 

5. CONCLUSION 

In this study, a novel approach is provided for 

presenting an optimal energy management schedule 

based on using the distribution feeder reconfiguration 

in the dynamic framework at the presence of DGs and 

capacitors. Furthermore, effect of uncertainty related to 

power demand is considered in the evaluations. The 

proposed DDFR problem consists of minimizing 

energy loss and ENS objective functions. As well as 

radial topology, voltage of the buses, current of lines 

are defined as proposed problem’s constraints.  A 

EPSO algorithm is provided to solve the DDFR in the 

single and multi-objective problems. Considering the 

simulation results, the EPSO algorithm obtained an 

optimum answer compared to other algorithms. 

Therefore, the effectiveness of the proposed method is 

confirmed in comparison with other algorithms for 

presenting an optimal energy management schedule. 

Finally, the conclusions can be as follows: 

 Based on the simulation results of the DDFR 

problem in the single and multi-objective 

frameworks, the capability of the proposed 

method is proved regardless of the dimension 

and complexity of the problem. 

 Investigating effects of DGs and capacitors 

simultaneously reduced the energy loss and 

ENS. 

 

 

Table 3. The optimum switching scheme obtained from 

the EPSO algorithm for solving the multi-objective 

optimization problem. 

L.L. 
Open Switches 

Sw1 Sw2 Sw3 Sw4 Sw5 

1 33 34 11 17 28 

2 6 14 8 36 28 

3 6 14 9 36 28 

4 7 14 11 36 37 

5 6 14 35 36 28 

6 33 34 10 17 37 

7 33 14 10 17 37 

8 6 12 9 15 28 

9 7 12 9 15 5 

10 33 12 35 32 28 

11 6 12 35 32 37 

12 20 14 11 17 5 

13 6 34 8 36 28 

14 6 14 8 32 28 

15 33 34 10 32 28 

16 7 34 11 15 5 

17 7 14 35 32 5 

18 33 34 9 36 4 

19 7 34 8 36 28 

20 33 14 11 17 5 

21 33 14 9 36 37 

22 7 14 35 17 22 

23 6 34 9 32 28 

24 20 34 10 17 28 

L.L.: Load Level 
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