تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,800,532 |
تعداد دریافت فایل اصل مقاله | 54,843,350 |
کاربرد شبکه های عصبی مصنوعی در مدل سازی توسعه کالبدی شهری (مطالعه موردی:شهر رشت) | ||
مطالعات برنامه ریزی سکونتگاه های انسانی | ||
دوره 19، شماره 2 - شماره پیاپی 67، شهریور 1403 | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
طلا عابدی1؛ غلامرضا میری* 2؛ پرویز رضائی3؛ رضا زارعی4 | ||
1دانشجوی دکترای جغرافیا و برنامه ریزی شهری، واحد آستارا ،دانشگاه آزاد اسلامی،آستارا، ایران | ||
2استادیار گروه جغرافیا و برنامه ریزی شهری، واحد زاهدان، دانشگاه آزاد اسلامی، زاهدان، ایران | ||
3دانشیار گروه جغرافیا ، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران | ||
4استادیار گروه آمار، دانشگاه گیلان، رشت، ایران | ||
چکیده | ||
مقدمه : توسعه کالبدی شهر ها به صورت روزافزون در حال افزایش است. مدیریت صحیح این توسعه از جهات گوناگون در زمره ی مسائل مهمی است که باید مدنظر قرار بگیرد. روش های متعددی برای پیش بینی و تعیین جهت توسعه شهری وجود دارد که یکی از این روش ها در تعیین مناطق مناسب ، روش مبتنی بر شبکه های عصبی است. هدف پژوهش : هدف این پژوهش مدلسازی توسعه شهر رشت طی 20 سال اخیر و پیش بینی جهات توسعه این شهر تا سال 2032 می باشد. روش شناسی تحقیق : با استفاده از تصاویر ماهواره ای ETM+ لندست 7 و8 سالهای 2002، 2012 و 2021 شهر رشت و با نرم افزار GIS تصاویر با ترکیب باندی مناسب آماده و سپس با استفاده از روش شبکه عصبی مصنوعی پرسپترون چند لایه (MLP) تصاویر طبقه بندی شده اند. شاخص های در نظر گرفته شده برای مدل همسایگی مناطق شهری، فاصله از نقاط شهری، فاصله تا مناطق مرکزی شهر و فاصله تا خیابان ها و راههای اصلی می باشند. قلمروجغرافیایی پژوهش : شهر رشت، مرکز استان گیلان و در ۴۹ درجه و ۳۵ دقیقه و ۴۵ ثانیه طول شرقی و ۳۷ درجه و ۱۶ دقیقه و ۳۰ ثانیه عرض شمالی از نصف النهار گرینویچ قرار دارد و مساحت آن حدود ۱۰۲۴۰ هکتار می باشد. یافته ها و بحث : در این مدل در حالت آموزش مرحله اول(ورودی اعمال 4 شاخص بر تصاویر سال 2002)، شبکه 104 تکرار انجام داد و کمترین میزان خطا که با معیار crossentropy ارزیابی می شود در تکرار 98 ام برابر با 058526/0 گردید. در مرحله دوم ورودی مدل اعمال 4 شاخص بر روی تصاویر 2012 بوده که کمترین میزان خطا 076657/0 ارزیابی شد. نتایج : در مجموع مدل توانسته است برای پیش بینی توسعه شهر رشت در سال 2012، 9/95 درصد و برای سال 2021، 8/93 درصد برآورد درستی داشته باشد که این عددها می تواند قابل قبول باشد. خطای مدل در این بخش اول 1/4 درصد و در بخش دوم 2/6 درصد بوده است. با بررسی دوره 20 ساله روند توسعه کالبدی، جهات توسعه شهر رشت در سال 2032 پیش بینی شد. | ||
کلیدواژهها | ||
مدل سازی؛ توسعه کالبدی شهر؛ شبکه عصبی مصنوعی؛ شهر رشت | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 178 |