تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,623 |
تعداد مشاهده مقاله | 78,416,302 |
تعداد دریافت فایل اصل مقاله | 55,444,852 |
Optimization of Process Parameters on Hydrothermal Liquefaction of Sambucus Ebulus for Bio-oil Production | ||
Journal of Applied Chemical Research | ||
دوره 16، شماره 4، دی 2022، صفحه 94-107 اصل مقاله (427.64 K) | ||
نوع مقاله: Original Article | ||
نویسندگان | ||
Amir Hosein Mohseni؛ Hadi Baseri* | ||
School of Chemistry, Damghan University, Damghan, Iran | ||
چکیده | ||
Nowadays, the production of bio-oil and chemical intermediates from renewable energy sources is very important because of growing concerns about climate and environmental changes. In this work, the thermal liquefaction of Sambucus ebulus (Danewort plant) is studied with a focus on the yield and composition of the produced bio-oil. The produced bio-oil was characterized by FTIR, GC, and GC-MS analyses, and more than 35 different chemical components were identified in it. About 60 w% of the produced bio-oil is composed of five chemical components of acetic acid (21.29%), pentanoic acid (19%), acetone (10.64%), neophytadiene (5%), and α-pinene (4.4%). The effects of various process parameters of reaction temperature, time, and concentration of solution media on the yield and composition of products were studied. The maximum yield of the produced bio-oil is about 42% in a temperature of 160°C, a reaction time of 2 h, and 0.75 V% of ethyl acetate in the solution media. | ||
کلیدواژهها | ||
Thermal liquefaction؛ Danewort؛ Bio-oil؛ Yield of product | ||
مراجع | ||
[1]. G. Kabir, B.H. Hameed, Renew. Sust. Energ. Rev., 70, 945 (2017). [2]. H.A. Baloch, M.T.H. Siddiqui, S. Nizamuddin, N.M. Mubarak, M. Khalid, M.P. Srinivasan, G.J. Griffin, J. Anal. Appl. Pyrolysis, 153, 104944 (2021). [3]. S. Aflaki, P. Hajikarimi, E.H. Fini, B. Zada, J. Mater. Civ. Eng., 26(3), 429 (2014). [4]. M. Chen, B. Leng, S. Wu, Y. Sang, Constr. Build. Mater., 66, 286 (2014). [5]. B. Khoshnevisan, N. Duan, P. Tsapekos, M.K. Awasthi, Z. Liu, A. Mohammadi, I. Angelidaki, D.C.W. Tsang, , Z. Zhang, J. Pan, L. Ma, M. Aghbashlo, M. Tabatabaei, H. Liu, Renew. Sust. Energ. Rev., 135, 110033 (2021). [6]. S. Biswas, D.K. Sharma, Int. J. Green Energy, 793, 811 (2021). [7]. G. Xiujuan, W. Shurong, W. Qi, G. Zuogang, L. Zhongyang, Chin. J. Chem. Eng., 19(1), 116 (2011). [8]. B.E.-O. Eboibi, D.M. Lewis, P.J. Ashman, S. Chinnasamy, Bioresour. Technol., 174, 212 (2014). [9]. U. Jena, K.C. Das, Energy Fuels, 25, 5472 (2011). [10]. A. Aierzhati, J. Watson, B. Si, M. Stablein, T. Wang, Y. Zhang, Energy Convers. Manag., 10, 100076 (2021). [11]. H.J. Huang, X.Z. Yuan, Prog. Energy Combust. Sci., 49, 59 (2015). [12]. P.S. Rajan, K.P. Gopinath, J. Arun, K.G. Pavithra, A.A. Joseph, S. Manasa, Renew. Sust. Energ. Rev., 144, 111019 (2021). [13]. D. C. Elliott, P. Biller, A.B. Ross, A.J. Schmidt, S.B. Jones, Bioresour. Technol., 178, 147 (2015). [14]. Z. Bi, J. Zhang, E. Peterson, Z. Zhu, C. Xia, Y. Liang, T.J.F. Wiltowski, Fuel, 188 (429), 112 (2017). [15]. R. Posmanik, D. Cantero, A. Malkani, D. Sills, J.J.T.J.o.S.F. Tester, J. Supercrit. Fluids, 119, 26 (2017). [16]. Z. Zhu, L. Rosendahl, S.S. Toor, D. Yu, G.J.A.E. Chen, Appl. Energy, 137, 183 (2015). [17]. S. Cheng, I.D’. cruz, M. Wang, M. Leitch, C. Xu, Energy Fuels, 24, 4659 (2010). [18]. S. Cheng, Electronic Theses and Dissertations., 1223 (2017). [19]. Q. Li, D. Liu, L. Song, P. Wu, Z.J.E. Yan, Fuels, 28(11), 6928 (2014). [20]. M. Jabbari, B. Daneshfard, M. Emtiazy, A. Khiveh, M.H. Hashempur, J. Evid.-Based Integr. Med., 22(4), 996 (2017). [21]. Z. Gao, N. Li, S.Yin, W. Yi, Energy, 175, 1067 (2019). [22]. B. Zhang, H. Feng, Z. He, S. Wang, H. Chen, Energy Convers. Manag., 159, 204 (2018).
[23]. R. Singh, T. Bhaskar, B. Balagurumurthy, Process Saf. Environ. Prot., 93, 154 (2015). [24]. Z. Shuping, W. Yulong, Y. Mingde, I. Kaleem, L. Chun, J. Tong, Energy, 35(12), 5406 (2010). [25]. M.H. Eikani, F. Golmohammad, H.S. Amoli, Z.B. Sadr, Sep. Sci. Technol., 48(8), 1194 (2013). [26]. S. Thiruvenkadam, S. Izhar, H. Yoshida, M. K. Danquah, R. Harun, Appl. Energy, 154, 815 (2015). [27]. D. Zhou, L. Zhang, S. Zhang, H. Fu, J. Chen, Energy Fuels, 24(7), 4054 (2010). [28]. Z. Wang, L. Li, R. Hu, X. Wang, C. Pan, S. Kang, S. Ren, Z. Lei, H. Shui, Fuel Process. Technol., 176, 167 (2018). [29]. R. Divyabharathia, P. Subramanian, Mater. Today: Proc., 45,603 (2020). [30]. Y. Ding, B. Shan, X. Cao, Y. Liu, M. Huang, B. Tang, J. Clean. Prod.: (2020) 125586. [31]. E. R. Abide, S. R. Mortari, G. Ugalde, A. Valerio, S.M. Amorim, M.D. Luccio, R de F.P.M. Moreira, R.C. Kuhn, W.L. Priamo, M.V. Tres, G.L. Zabot, M.A. Mazutti, J. Clean. Prod., 209, 386 (2019). [32]. N. Akiya, P.E. Savage, Chem. Rev., 102 (8), 2725 (2002). [33]. A.R.R. Pinto, F. Antas, R.C.D. Santos, S. Bowra, P. Simoes, S. Barreiros, A. Paiva, J. Anal. Appl. Pyrol., 127, 68 (2017). [34]. B. Jin, P. Duan, C. Zhang, Y. Xu, L. Zhang, F. Wang, Chem. Eng. J., 254, 384 (2014). [35]. T.H. Pedersen, L. Jasiūnas, L. Casamassima, S. Singh, T. Jensen, L.A. Rosendahl, Energy Convers. Manag., 106, 886 (2015). [36]. T. Aysu, H. Durak, Biofuel, Bioprod. Biorefin., 9, 231 (2015). [37]. T.H. Pedersen, I.F. Grigoras, J. Hoffmann, S.S. Toor, I.M. Daraban, C.U. Jensen, S.B. Iversen, R.B. Madsen, M. Glasius, K.R. Arturi, Appl. Energy, 162, 1034 (2016). [38]. J.L. Wagner, J. Perin, R.S. Coelho, V.P. Ting, C.J. Chuck, T. Teixeira Franco, Waste Biomass Valorization, 9, 1867 (2018). [39]. M. P. Caporgno, J. Pruvost, J. Legrand, O. Lepine, M. Tazerout, C. Bengoa, Bioresour. Technol., 214, 404 (2016). [40]. Y. Chen, Y. Wu, P. Zhang, D. Hua, M. Yang, C. Li, Z. Chen, J. Liu, Bioresour. Technol., 124, 190 (2012). [41]. H. Feng, B. Zhang, Z. He, S. Wang, O. Salih, Q. Wang, Energy, 155, 1093 (2018). [42]. Y. Han, K. Hoekman, U. Jena, P. Das, Energies, 13, 124 (2020). | ||
آمار تعداد مشاهده مقاله: 27 تعداد دریافت فایل اصل مقاله: 80 |