| تعداد نشریات | 418 |
| تعداد شمارهها | 10,013 |
| تعداد مقالات | 83,708 |
| تعداد مشاهده مقاله | 79,578,935 |
| تعداد دریافت فایل اصل مقاله | 56,276,092 |
A Review of Feature Selection Method Based on Optimization Algorithms | ||
| Journal of Computer & Robotics | ||
| مقاله 5، دوره 16، شماره 1 - شماره پیاپی 27، فروردین 2023، صفحه 57-74 اصل مقاله (552.93 K) | ||
| نوع مقاله: Reviews | ||
| شناسه دیجیتال (DOI): 10.22094/jcr.2022.1974681.1286 | ||
| نویسندگان | ||
| Zohre Sadeghian؛ Ebrahim Akbari* ؛ Hossein Nematzadeh؛ Homayun Motameni | ||
| Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran | ||
| چکیده | ||
| Feature selection is the process of identifying relevant features and removing irrelevant and repetitive features with the aim of observing a subset of features that describe the problem well and with minimal loss of efficiency. One of the feature selection approaches is using optimization algorithms. This work provides a summary of some meta-heuristic feature selection methods proposed from 2018 to 2021 that were designed and implemented on a wide range of different data. The results of the study showed that some meta-heuristic algorithms alone cannot perfectly solve the feature selection problem on all types of datasets with an acceptable speed. In other words, depending on dataset, a special meta-heuristic algorithm should be used. | ||
| کلیدواژهها | ||
| Data dimension reduction؛ Classification؛ Feature Selection؛ Optimization Algorithm؛ Meta-heuristic Algorithms | ||
|
آمار تعداد مشاهده مقاله: 222 تعداد دریافت فایل اصل مقاله: 416 |
||