- Kumar, D. M., Satyanarayana, D., & Prasad, M. G. (2021). “ MRI brain tumor detection using optimal possibilistic fuzzy C-means clustering algorithm and adaptive k-nearest neighbor classifier,” Journal of Ambient Intelligence and Humanized Computing, 12(2), 2867-2880.
- Wang, G., Li, W., Zuluaga, M. A., Pratt, R., Patel, P. A., Aertsen, M. ... & Vercauteren, T. (2018). “ Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE transactions on medical imaging,”37(7), 1562-1573.
- Mohan, G., & Subashini, M. M. (2018). MRI based medical image analysis: “ Survey on brain tumor grade classification. Biomedical Signal Processing and Control, 39, 139-161.
- Rajagopal, R. (2019). “ Glioma brain tumor detection and segmentation using weighting random forest classifier with optimized ant colony features,” International Journal of Imaging Systems and Technology, 29(3), 353-359.
- Devkota, B., Alsadoon, A., Prasad, P. W. C., Singh, A. K., & Elchouemi, A. (2020). “ Image segmentation for early stage brain tumor detection using mathematical morphological reconstruction,” Procedia Computer Science, 125, 115-123.
- Bousselham, A., Bouattane, O., Youssfi, M., & Raihani, A. (2019). “Towards reinforced brain tumor segmentation on MRI images based on temperature changes on pathologic area,” International journal of biomedical imaging, 2019.
- Roy, S., Bhattacharyya, D., Bandyopadhyay, S. K., & Kim, T. H. (2017). “An iterative implementation of level set for precise segmentation of brain tissues and abnormality detection from MR images,”IETE Journal of Research, 63(6), 769-783.
- Bahadure, N. B., Ray, A. K., & Thethi, H. P. (2018). “Comparative approach of MRI-based brain tumor segmentation and classification using genetic algorithm,”Journal of digital imaging, 31(4), 477-489.
- Abbas, W. A. (2020). “Genetic Algorithm-Based Anisotropic Diffusion Filter and Clustering Algorithms for Thyroid Tumor Detection,”Iraqi Journal of Science, 1016-1026.
- Bahadure, N. B., Ray, A. K., & Thethi, H. P. (2017). “Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM,”International journal of biomedical imaging, 2017.
- Yu, L. (2018). “Image noise preprocessing of interactive projection system based on switching filtering scheme,”Complexity, 2018.
- Niaz, A., Memon, A. A., Rana, K., Joshi, A., Soomro, S., Kang, J. S., & Choi, K. N. (2020). “Inhomogeneous Image Segmentation Using Hybrid Active Contours Model With Application to Breast Tumor Detection,”IEEE Access, 8, 186851-186861.
- Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., & Sánchez, C. I. (2017). “A survey on deep learning in medical image analysis. Medical image analysis,”42, 60-88.
- Xu, M., Li, C., Zhang, S., & Le Callet, P. (2020). “State-of-the-art in 360 video/image processing: Perception, assessment and compression,”IEEE Journal of Selected Topics in Signal Processing, 14(1), 5-26.
- Abdulrahman, A. A., Rasheed, M., & Shihab, S. (2021, May). “The Analytic of image processing smoothing spaces using wavelet,” In Journal of Physics: Conference Series (Vol. 1879, No. 2, p. 022118). IOP Publishing.
- Jiao, L., & Zhao, J. (2019). “A survey on the new generation of deep learning in image processing,”IEEE Access, 7, 172231-172263.
- Wu, T., & Yang, Z. (2021). “Animal tumor medical image analysis based on image processing techniques and embedded system,”Microprocessors and Microsystems, 81, 103671.
- Bre, F., Gimenez, J. M., & Fachinotti, V. D. (2018). “Prediction of wind pressure coefficients on building surfaces using artificial neural networks,”Energy and Buildings, 158, 1429-1441.
- Juang, C. F., Chen, G. C., Liang, C. W., & Lee, D. (2016). “Stereo-camera-based object detection using fuzzy color histograms and a fuzzy classifier with depth and shape estimations,”Applied Soft Computing, 46, 753-766.
- Cheng, G., & Han, J. (2016). “A survey on object detection in optical remote sensing images,”ISPRS Journal of Photogrammetry and Remote Sensing, 117, 11-28.
- Wang, X., Ning, C., & Xu, L. (2015). “Spatiotemporal saliency model for small moving object detection in infrared videos,” Infrared Physics & Technology, 69, 111-117.
- Han, P., Du, J., Zhou, J., & Zhu, S. (2013). “An object detection method using wavelet optical flow and hybrid linear-nonlinear classifier,” Mathematical Problems in Engineering, 2013.
- Zhu, C., He, Y., & Savvides, M. (2019). “Feature selective anchor-free module for single-shot object detection,” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 840-849).
- Antúnez, E., Marfil, R., Bandera, J. P., & Bandera, A. (2013). “Part-based object detection into a hierarchy of image segmentations combining color and topology,” Pattern Recognition Letters, 34(7), 744-753.
- Vard, A., Jamshidi, K., & Movahhedinia, N. (2012). “Small object detection in cluttered image using a correlation based active contour model,” Pattern Recognition Letters, 33(5), 543-553.
- Wang, L., Shi, J., Song, G., & Shen, I. F. (2017, November). “Object detection combining recognition and segmentation,” In Asian conference on computer vision (pp. 189-199). Springer, Berlin, Heidelberg.
- Rahebi, J., Elmi, Z., & Shayan, K. (2018, June). “Digital image edge detection using an ant colony optimization based on genetic algorithm,” In 2010 IEEE Conference on Cybernetics and Intelligent Systems (pp. 145-149). IEEE.
- Singh, K. K., Bajpai, M. K., & Pandey, R. K. (2015, March). “A novel approach for edge detection of low contrast satellite images,” International Society for Photogrammetry and Remote Sensing.
- Chakraborty, N., Subudhi, P., & Mukhopadhyay, S. (2019). “Shock filter-based morphological scheme for texture enhancement,” IET Image Processing, 13(4), 653-662.
- Drăguţ, L., Csillik, O., Eisank, C., & Tiede, D. (2014). “Automated parameterisation for multi-scale image segmentation on multiple layers,” ISPRS Journal of photogrammetry and Remote Sensing, 88, 119-127.
- Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., & Maier-Hein, K. H. (2017, September). “Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge,”. In International MICCAI Brainlesion Workshop (pp. 287-297). Springer, Cham.
- Varoquaux, G., Raamana, P. R., Engemann, D. A., Hoyos-Idrobo, A., Schwartz, Y., & Thirion, B. (2017). “Assessing and tuning brain decoders: cross-validation, caveats, and guidelines,” NeuroImage, 145, 166-179.
- Alam, M. S., Rahman, M. M., Hossain, M. A., Islam, M. K., Ahmed, K. M., Ahmed, K. T. ... & Miah, M. S. (2019). “Automatic Human Brain Tumor Detection in MRI Image Using Template-Based K Means and Improved Fuzzy C Means Clustering Algorithm,” Big Data and Cognitive Computing, 3(2), 27.
- Ejaz, K., Rahim, M. S. M., Rehman, A., Chaudhry, H., Saba, T., Ejaz, A., & Ej, C. F. (2018). “Segmentation method for pathological brain tumor and accurate detection using MRI,” International Journal of Advanced Computer Science and Applications, 9(8), 394-401.
- Russ, J. C., & Russ, J. C. (2017). “Introduction to image processing and analysis,” CRC press.
|