- Talebitooti R., Darvish Gohari H., Zarastvand M., Loghmani A., 2019, A robust optimum controller for suppressing radiated sound from an intelligent cylinder based on sliding mode method considering piezoelectric uncertainties, Journal of Intelligent Materials Systems and Structures 30(20): 3066-3079.
- Darvish Gohari H., Zarastvand M., Talebitooti R., Loghmani A., Omidpanah M., 2020, Radiated sound control from a smart cylinder subjected to piezoelectric uncertainties based on sliding mode technique using self-adjusting boundary layer, Aerospace Scienceand Technology 106: 106141.
- Darvish Gohari H., Zarastvand M., Talebitooti R., Shahbazi R., 2021, Hybrid control technique for vibroacoustic performance analysis of a smart doubly curved sandwich structure considering sensor and actuator layers, Journal of Sandwich Structures and Materials 23(5): 1453-1480.
- Asadijafari M.H., Zarastvand M.R., Talebitooti R., 2021, The effect of considering Pasternak elastic foundation on acoustic insulation of the finite doubly curved composite structures, Composite Structures 256: 113064.
- Hou Y., 2017, Flexible ionic diodes for low-frequency mechanical energy harvesting, Advanced Energy Materials 7(5): 1601983.
- Beeby S.P., 2007, A micro electromagnetic generator for vibration energy harvesting, Journal of Micromechanics and Microengineering 17(7): 1257.
- Harne R.L., Wang K. W., 2013, A review of the recent research on vibration energy harvesting via bistable systems, Smart Materials and Structures 22(2): 23001.
- Aboulfotoh N.A., Arafa M.H., Megahed S.M., 2013, A self-tuning resonator for vibration energy harvesting, Sensors and Actuators A: Physical 201: 328-334.
- Bai X., Wen Y., Li P., Yang J., Peng X., Yue X., 2014, Multi-modal vibration energy harvesting utilizing spiral cantilever with magnetic coupling, Sensors and Actuators A: Physical 209: 78-86.
- Wu X., Lee D.-W., 2015, Magnetic coupling between folded cantilevers for high-efficiency broadband energy harvesting, Sensors and Actuators A: Physical 234: 17-22.
- Daqaq M.F., Bode D., 2011, Exploring the parametric amplification phenomenon for energy harvesting, Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering 225(4): 456-466.
- Abdelkefi A., Nayfeh A.H., Hajj M.R., 2012, Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters, Nonlinear Dynamics 67(2): 1147-1160.
- Daqaq M.F., Masana R., Erturk A., Quinn D.D., 2014, On the role of nonlinearities in vibratory energy harvesting : a critical review and discussion, Applied Mechanics Reviews 66(4): 040801.
- Yang Z., Zhu Y., Zu J., 2015, Theoretical and experimental investigation of a nonlinear compressive-mode energy harvester with high power output under weak excitations, Smart Materials and Structures 24(2): 25028.
- Jahani K., Aghazadeh P., 2016, Investigating the performance of piezoelectric energy harvester including geometrical, damping and material nonlinearities with the method of multiple scales, Modares Mechanical Engineering 16(4): 354-360.
- Lin J.-T., Alphenaar B., 2010, Enhancement of energy harvested from a random vibration source by magnetic coupling of a piezoelectric cantilever, Journal of Intelligent Materials Systems and Structures 21(13): 1337-1341.
- Zhao D., 2018, Analysis of single-degree-of-freedom piezoelectric energy harvester with stopper by incremental harmonic balance method, Materials Research Express 5(5): 55502.
- Tang L., Yang Y., Soh C.K., 2010, Toward broadband vibration-based energy harvesting, Journal of Intelligent Materials Systems and Structures 21(18): 1867-1897.
- Tang L., Yang Y., Soh C.-K., 2012, Improving functionality of vibration energy harvesters using magnets, Journal of Intelligent Materials Systems and Structures 23(13): 1433-1449.
- Gammaitoni L., Hänggi P., Jung P., Marchesoni F., 2009, Stochastic resonance: a remarkable idea that changed our perception of noise, European Physical Journal B 69(1): 1-3.
- Erturk A., Hoffmann J., Inman D.J., 2009, A piezomagnetoelastic structure for broadband vibration energy harvesting, Applied Physics Letters 94(25): 254102.
- Ferrari M., Ferrari V., Guizzetti M., Andò B., Baglio S., Trigona C., 2010, Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters, Sensors and Actuators A: Physical 162(2): 425-431.
- Stanton S.C., McGehee C.C., Mann B.P., 2010, Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator, Physica D: Nonlinear Phenomena 239(10): 640-653.
- Stanton S.C., Owens B.A.M., Mann B.P., 2012, Harmonic balance analysis of the bistable piezoelectric inertial generator, Journal of Sound and Vibration 331(5): 3617-3627.
- Karami M.A., Inman D.J., 2011, Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems, Journal of Sound and Vibration 330(23): 5583-5597.
- Erturk A., Inman D.J., 2011, Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling, Journal of Sound and Vibration 330(10): 2339-2353.
- Sebald G., Kuwano H., Guyomar D., Ducharne B., 2011, Simulation of a duffing oscillator for broadband piezoelectric energy harvesting, Smart Materials and Structures 20(7): 75022.
- Sebald G., Kuwano H., Guyomar D., Ducharne B., 2011, Experimental duffing oscillator for broadband piezoelectric energy harvesting, Smart Materials and Structures 20(10): 102001.
- Kim P., Seok J., 2014, A multi-stable energy harvester: Dynamic modeling and bifurcation analysis, Journal of Sound and Vibration 333(21): 5525-5547.
- Zhao D., Gan M., Zhang C., Wei J., Liu S., 2018, Analysis of broadband characteristics of two degree of freedom bistable piezoelectric energy harvester, Materials Research Express 5(8):
- Vasic D., Costa F., 2013, Modeling of piezoelectric energy harvester with multi-mode dynamic magnifier with matrix representation, International Journal of Applied Electromagnetics and Mechanics 43(3): 237-255.
- Wang H., Shan X., Xie T., 2012, An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system, Journal of Zhejiang University Science A 13(7): 526-537.
- Zhou W., Penamalli G.R., Zuo L., 2011, An efficient vibration energy harvester with a multi-mode dynamic magnifier, Smart Materials and Structures 21(1): 15014.
- Aldraihem O., Baz A., 2011, Energy harvester with a dynamic magnifier, Journal of Intelligent Materials Systems and Structures 22(6): 521-530.
- Aladwani A., Arafa M., Aldraihem O., Baz A., 2012, Cantilevered piezoelectric energy harvester with a dynamic magnifier, Journal of Vibration and Acoustics 134(3): 31004.
- Tang L., Wang J., 2017, Size effect of tip mass on performance of cantilevered piezoelectric energy harvester with a dynamic magnifier, Acta Mechanica 228(11): 3997-4015.
- Tang L., Yang Y., 2012, A multiple-degree-of-freedom piezoelectric energy harvesting model, Journal of Intelligent Materials Systems and Structures 23(14): 1631-1647.
- Wang G.-Q., Liao W.-H., 2016, A bistable piezoelectric oscillator with an elastic magnifier for energy harvesting enhancement, Journal of Intelligent Materials Systems and Structures 28(3): 392-407.
- Erturk A., Inman D.J., 2009, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations, Smart Materials and Structures 18(2): 25009.
|