- Zheng P, Li Zh & Zhou Zh. Gut microbiome in type 1 diabetes: A comprehensive review. Diabetes Metab Res Rev. 2018; 34: e3043. DOI:org/10.1002/dmrr.3043
- Poppe J, Baarle L, Matteoli G & Verbeke K. How microbial food fermentation supports a tolerant gut. Molecular Nutrition & Food Research. 2020. DOI: 1002/mnfr.202000036
- Mayer EA, Savidge T & Shulman RJ. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology. 2014; 146:1500-12.
DOI: 1053/j.gastro.2014.02.037
- Macfarlane, GT & Macfarlane, S. Bacteria,colonic fermentation and gastro intestinal health. AOAC Int. 2012; 95: 50-60.
- Xu W, Zhou Y & Hang X, Shen D. Current evidence on the relationship between CYP1B1 polymorphisms and lung cancer risk: a metaanalysis. Mol Biol Rep. 2012; 39(3): 2821-9.
- Beyerle J, Frei E, Stiborov M, Habermann N & Ulrich CM. Biotransformation of xenobiotics in the human colon and rectum and its association with colorectal cancer. Drug Metab Rev; 2015; 47: 199-221.
- Gutierrez-Vazquez C & Quintana FJ. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity. 2018; 48(1): 19-33.
- Donaldson GP, Lee SM & Mazmanian SK. Gut biogeography of the bacterial microbiota. Nature reviews. Microbiology. 2016; 14(1): 20-32.
- Li H & et al. The outer mucus layer hosts a distinct intestinal microbial niche. Nature Communications. 2015; 6(1): 8292.
- Franzosa EA & et al. Identifying personal microbiomes using metagenomic codes. Proceedings of the National Academy of Sciences of the United States of America. 2015; 112(22): 2930-8.
- Costea PI & et al. Enterotypes in the landscape of gut microbial community composition. Nature Microbiology. 2017; 3(1): 8-16.
- Ha CW, Lam YY & Holmes AJ. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World Journal of Gastroenterology. 2014; 20(44): 16498-16517.
- Marinelli L, Martin-Gallausiaux C, Bourhis J-M, B_eguet-Crespel F, Blotti_ere HM & Lapaque N. Identification of the novel role of butyrate as Ahr ligand in human intestinal epithelial cells. Sci Rep. 2019; 9(1): 643.
- Van der Beek CM & et al. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin Sci (Lond). 2016; 130(22): 2073-2082. DOI:1042/CS20160263
- Louis P, Hold G & Flint HJ.The gut microbiota, bacterial metabolites and colorectal cancer. Rev.Microbiol. 2014; 12: 661-672. DOI: 10.1038/nrmicro3344
- Reichardt N & et al. Phylogenetic distribution of three pathways forpropionate production within the human gut microbiota. ISMEJ. 2014; 8: 1323-1335.
DOI:1038/ismej.2014.14
- Flint HJ, Duncan SH, Scott KP, & Louis P. Links between diet, gut microbiota composition and gut Proc.Nutr.Soc. 2015; 74:13-22.
DOI: 10.1017/s0029665114001463
- Machiels K, & et al. Adecrease of the butyrate-producing species Roseburiahominis and Faecali bacterium prausnitzii defines dysbiosis in patients with Gut. 2014; 63:1275-1283. DOI: 10.1136/gutjnl-2013-304833.
- Nedjadi T, Moran, AW, Al-Rammahi MA & Shirazi-Beechey SP. Characterization of butyrate transport across the luminal membranes of equine large intestine. Exp Physiol. 2014; 99(10): 1335-1347.
- Boets E, Deroover L, Houben E, Vermeulen K, Gomand SV, Delcour JA & Verbeke K. Quantification of in vivo colonic short chain fatty acid production from inulin. Nutrients. 2015; 7(11): 8916-8929.
- Macfarlane GT & Macfarlane S. Bacteria,colonic fermentation and gastro intestinal health. AOACInt. 2012; 95: 50-60.
- Jung TH, Park JH, Jeon WM & Han KS. Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretionand MAPK signaling pathway. Res.Pract. 2015; 9: 343-349. DOI: 10.4162/nrp.2015.9.4.343
- Den Besten G & et al. Short-chain fatty acids protect against high-fatdiet-induced obesity via a PPAR gamma-Dependent Switch from lipogenesist of at oxidation. 2015; 64: 2398-2408. DOI: 10.2337/db14-1213
- Canfora EE., Jocken JW. & Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Rev.Endocrinol. 2015, 11: 577-591.
DOI: 10.1038/nrendo.2015.128.
- Keku TO, Dulal S, Deveaux A, Jovov, B & Han X. The gastro intestinal microbiota and colorectal cancer. J. Physiol. Gastrointest. LiverPhysiol. 2015, 308: G351-G363.
DOI: 10.1152/ajpgi.00360.2012
- Simon GM, Cheng J & Gordon JI. Quantitative assessment of the impact of the gut microbiota on lysine -acetylation of host proteins using gnotobiotic mice. Proceedings of the National Academy of Sciences. 2012; 109(28): 11133-11138.
- Xie Z & et al. Metabolic Regulation of Gene Expression by Histone Lysine β-Hydroxybutyrylation. Molecular Cell. 2016; 62(2): 194-206.
- Fellows R & et al. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nature Communications. 2018; 9(1): 105.
- Wang G & et al. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. Journal of cellular physiology. 2019. DOI:1002/jcp.28436.
- Han A, Bennett N, Macdonald A, Johnstone M, Whelan J & Donohoe DR. Cellular metabolism and dose reveal carnitine‐dependent and ‐independent mechanisms of butyrate oxidation in colorectal cancer cells. Journal of Cellular Physiology. 2016; 231: 1804-1813.
- Koh A, De VF, Kovatcheva‐Datchary P & Bckhed F. From dietary fiber to host physiology: Short‐chain fatty acids as key bacterial metabolites. Cell. 2016; 165:
1332-1345.
- Zheng L & et al. Microbial-Derived Butyrate Promotes Epithelial Barrier Function through IL-10 Receptor–Dependent Repression of Claudin-2. The Journal of Immunology. 2017; 199(8): 2976-2984. DOI:4049/jimmunol.1700105
- Binoy Shivanna, Ch Ch & Bhagavatula M. The Aryl Hydrocarbon Receptor (AHR): A Novel Therapeutic Target for Pulmonary Diseases? J. Mol. Sci. 2022; 23: 1516.
DOI: https://doi.org/1 0.3390/ijms23031516
- Agus A, Planchais J & Sokol H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe. 2018; 23: 716-724.
- Gutierrez-Vazquez C & Quintana FJ. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity. 2018; 48(1): 19-33.
- Roager HM & Licht TR. Microbial tryptophan catabolites in health and disease. Commun. 2018; 9: 3294.
- Korecka A & et al. Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism. NPJ Biofilms Microbiomes. 2016; 2: 16014.
- Cibrian D & et al. CD69 controls the uptake of L-tryptophan through LAT1-CD98 and AhR-dependent secretion of IL-22 in psoriasis. Immunol. 2016; 17: 985-996.
- Vyhlídalová B & et al. Gut Microbial Catabolites of Tryptophan Are Ligands and Agonists of the Aryl Hydrocarbon Receptor: A Detailed Characterization. J. Mol. Sci. 2020; 21: 2614.
- Zhang M & et al. The Chinese medicinal herb decoction QRZSLXF enhances anti-inflammatory e_ect in TNBS-induced colitis via balancing Th17/Tregs J. Ethnopharmacol. 2020; 251: 112549.
- Jin UH & et al. Short Chain Fatty Acids Enhance Aryl Hydrocarbon (Ah) Responsiveness in Mouse Colonocytes and Caco-2 Human Colon Cancer Cells. Rep. 2017; 7: 10163.
- Piper CJM & et al. Aryl Hydrocarbon Receptor Contributes to the Transcriptional Program of IL-10 Producing Regulatory B Cells. Cell Rep. 2019; 29: 1878-1892.e7.
- Manzella CR & et al. Serotonin Modulates AhR Activation by Interfering with CYP1A1-Mediated Clearance of AhR Ligands. Cell Physiol. Biochem. 2020; 54: 126-141.
- Obata Y & et al. Neuronal programming by microbiota regulates intestinal physiology. Nature, 2020; 578: 284-289.
- Zapletal O & et al. Butyrate alters expression of cytochrome P450 1A1 and metabolism of benzoapyrene via its histone deacetylase activity in colon epithelial cell models. Toxicol. 2017; 91: 2135-2150.
- Rosser EC & et al. Microbiota-DerivedMetabolites SuppressArthritis byAmplifyingAryl-Hydrocarbon Receptor Activation in Regulatory B Cells. CellMetab. 2020; 31:
837-851.e10.
- Wang J & et al. Aryl hydrocarbon receptor/IL-22/Stat3 signaling pathway is involved in the modulation of intestinal mucosa antimicrobial molecules by commensal microbiota in mice. Innate Immun. 2018; 24: 297-306.
- Collins SL & Patterson AD. The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharmaceutica Sinica B. 2020; 10(1): 19e32.
- Un-Ho Jin & et al. Short Chain Fatty Acids Enhance Aryl Hydrocarbon (Ah) Responsiveness in Mouse Colonocytes and Caco-2 Human Colon Cancer Cells. ScienTiFic REPortS. 2017; 7: 10163. DOI: 1038/s41598-017-10824-x
- Jin UH & et al. Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities. Pharmacol. 2014; 85: 777-788.
- Cheng Y & et al. Editor’s Highlight: Microbial-Derived 1,4-Dihydroxy-2-naphthoic Acid and Related Compounds as Aryl Hydrocarbon Receptor Agonists/Antagonists: Structure-Activity Relationships and Receptor Modeling. Sci. 2017; 155: 458-473.
- Metidji A & et al. The environmental sensor Ahr protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immunity. 2018; 49(2): 353-362 e355.
|