- T. Hien, Y.-L. Su, R. Sann, and L. T. P. Thanh, "Analysis of Online Customer Complaint Behavior in Vietnam’s Hotel Industry," Sustainability, vol. 14, no. 7, p. 3770, 2022.
- Dogan, O. F. Seymen, and A. Hiziroglu, "Customer Behavior Analysis by Intuitionistic Fuzzy Segmentation: Comparison of Two Major Cities in Turkey," International Journal of Information Technology & Decision Making, vol. 21, no. 02, pp. 707-727, 2022.
- T. Tang, H.-H. Wu, H.-W. Yang, J. I. Shieh, and M. M. Lo, "Customer Behavior Analysis of the Chinese New Year from a Supermarket in Taiwan," in 2022 2nd International Conference on Information Technology and Education (ICIT&E), 2022, pp. 156-159: IEEE.
- Nazer, and R. Khorsand, "Energy Aware Resource Provisioning for Multi-Criteria Scheduling in Cloud Computing," Cybernetics and Systems, 2022 Apr 30:1-30.
- M. Baashar, A. K. Mahomood, M. A. Almomani, and G. A. Alkawsi, "Customer relationship management (CRM) in healthcare organization: A review of ten years of research," in Computer and Information Sciences (ICCOINS), 2016 3rd International Conference on, 2016, pp. 97-102: IEEE.
- Abbasimehr and M. Shabani, "A new methodology for customer behavior analysis using time series clustering: A case study on a bank’s customers," Kybernetes, 2019.
- C. Gopal and L. Jacob, "Customer Behavior Analysis Using Unsupervised Clustering and Profiling: A Machine Learning Approach," in 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 2022, pp. 2075-2078: IEEE.
- Tavousi, S. Azizi, and A. Ghaderzadeh, "A fuzzy approach for optimal placement of IoT applications in fog-cloud computing," Cluster Computing, vol. 25, no. 1, pp. 303-320, 2022.
- Breiman, Classification and regression trees. Routledge, 2017.
- Saberi, M. Ramezanpour, and R. Khorsand, "An efficient data hiding method using the intra prediction modes in HEVC," Multimedia Tools and Applications 79 (2020): 33279-33302.
- B. Kotsiantis, "Decision trees: a recent overview," Artificial Intelligence Review, vol. 39, no. 4, pp. 261-283, 2013.
- Tharwat and A. E. Hassanien, "Chaotic antlion algorithm for parameter optimization of support vector machine," Applied Intelligence, vol. 48, no. 3, pp. 670-686, 2018.
- R Sharifi, M Ramezanpour, ”Customer Behavior Analysis using Wild Horse Optimization Algorithm,” Majlesi Journal of Telecommunication Devices, 2023.
- Abbasimehr and F. S. Baghery, "A novel time series clustering method with fine-tuned support vector regression for customer behavior analysis," Expert Systems with Applications, p. 117584, 2022.
- Bandara, C. Bergmeir, and S. Smyl, "Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach," Expert systems with applications, vol. 140, p. 112896, 2020.
- Norouzi, A. Arshaghi, and M. Ashourian, "Encryption of Color Images using Pixel Shift Algorithm and Developed Hill Algorithm,"Majlesi Journal of Telecommunocation Devices, vol. 11, no. 4, pp.177-184, 2022.
- Hosseini, N. Abdolvand, and S. R. Harandi, "Two-dimensional analysis of customer behavior in traditional and electronic banking," Digital Business, vol. 2, no. 2, p. 100030, 2022.
- Hosseini and M. Shabani, "New approach to customer segmentation based on changes in customer value," Journal of Marketing Analytics, vol. 3, no. 3, pp. 110-121, 2015.
- Ma, Z. Li, and D. Zheng, "Analysis of Chinese consumers’ willingness and behavioral change to purchase Green agri-food product online," Plos one, vol. 17, no. 4, p. e0265887, 2022.
- Baratzadeh and S. M. Hasheminejad, "Customer Behavior Analysis to Improve Detection of Fraudulent Transactions using Deep Learning," Journal of AI and Data Mining, vol. 10, no. 1, pp. 87-101, 2022.
- He, D. Cai, and P. Niyogi, "Laplacian score for feature selection," Advances in neural information processing systems, vol. 18, pp. 507-514, 2005.
- Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, and D. Brown, "Text classification algorithms: A survey," Information, vol. 10, no. 4, p. 150, 2019.
- Nayak, B. Naik, and H. Behera, "A comprehensive survey on support vector machine in data mining tasks: applications & challenges," International Journal of Database Theory and Application, vol. 8, no. 1, pp. 169-186, 2015.
- Zhang and Y. Guo, "Optimization of SVM parameters based on PSO algorithm," in 2009 Fifth International Conference on Natural Computation, 2009, vol. 1, pp. 536-539: IEEE.
- Mafarja, I. Aljarah, H. Faris, A. I. Hammouri, A.-Z. Ala’M, and S. Mirjalili, "Binary grasshopper optimisation algorithm approaches for feature selection problems," Expert Systems with Applications, vol. 117, pp. 267-286, 2019.
- Martínez, M. P. Frías, M. D. Pérez-Godoy, and A. J. Rivera, "Dealing with seasonality by narrowing the training set in time series forecasting with kNN," Expert systems with applications, vol. 103, pp. 38-48, 2018.
|