- Dai C, Han Y, Duan Y, Lai X, Fu R, Liu S, Leong KH, Tu Y, Zhou L. Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments. Environ Res. 2022; 205:112423. https:/ doi: 10.1016/j.envres.2021.112423
- Xingjian Xu, Wenming Liu, Wei Wang, Shuhua Tian, Pan Jiang, Qige Qi, Fengjiao Li, Haiyan Li, Quanying Wang, Huai Li, Hongwen Yu. Potential biodegradation of phenanthrene by isolated halotolerant bacterial strains from petroleum oil polluted soil in Yellow River Delta. Sci. Total Environ. 2019; 664:1030-1038. https://doi.org/10.1016/j.scitotenv.2019.02.080
- Mallah M. A, Changxing L, Mallah M. A, Noreen S, Liu Y, Saeed M, Xi H, Ahmed B, Feng F, Mirjat A. A, Wang W, Jabar A, Naveed M, Li J. H, Zhang Q. Polycyclic aromatic hydrocarbon, and its effects on human health: An overeview. Chemosphere. 2022; 296:133948. https://doi.org/10.1016/j.chemosphere.2022.133948
- Gupte A, Tripathi A, Patel H, Rudakiya D, Gupte S. Bioremediation of polycyclic aromatic hydrocarbon (PAHs): A perspective. Open Biotechnol J. 2016; 10:363-368.
- Imam A, Kumar Suman S, Kanaujia PK, Ray A. Biological machinery for polycyclic aromatic hydrocarbons degradation: A review. Bioresour Technol. 2022; 343:126121. https://doi:10.1016/j.biortech.2021.126121
- Kuppusamy S, Thavamani P, Megharaj M, Naidu R. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by novel bacterial consortia tolerant to diverse physical settings - Assessments in liquid- and slurry-phase systems. Int Biodeterior Biodegradation. 2016; 108:149-157. http://dx.doi.org/10.1016/j.ibiod.2015.12.013
- Bastiaens L, Springael D, Wattiau P, Harms H, Verachtert H, Diels L. Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl. Environ. Microbiol. 2000; 66:1834-1843
- Subashchandrabose S. R, Venkateswarlu K, Naidu R, Megharaj M. Biodegradation of high-molecular weight PAHs by Rhodococcus wratislaviensis strain 9: Overexpression of amidohydrolase induced by pyrene and BaP. Sci Total Environ. 2019; 651(1): 813–821. https://doi.org/10.1016/j.scitotenv.2018.09.192
- Akbari A, David C, Rahim A A, Ghoshal S. Salt selected for hydrocarbon-degrading bacteria and enhanced hydrocarbon biodegradation in slurry bioreactors. Water Res. 2021; 202:117424. https://doi.org/10.1016/j.watres.2021.117424
- Al Farraj D. A, Hadibarata T, Yuniarto A, Alkufeidy R. M, Alshammari M. K, Syafiuddin A. Exploring the potential of halotolerant bacteria for biodegradation of polycyclic aromatic hydrocarbon. Bioprocess and biosystems engineering. 2020; 43(12):2305–2314. https://doi.org/10.1007/s00449-020-02415-4
- Pourbabaee A.A, Shahriari M.H, Garousin H. Biodegradation of phenanthrene as a model hydrocarbon: Power display of a super-hydrophobic halotolerant enriched culture derived from a saline-sodic soil. Biotechnol Rep. 2019; 24: e00388. https://doi.org/10.1016/j.btre.2019.e00388
- Ghorbannezhad H, Moghimi H, Dastgheib SMM. Biodegradation of high molecular weight hydrocarbons under saline condition by halotolerant Bacillus subtilis and its mixed cultures with Pseudomonas species. Sci Rep. 2022; 2;12(1):13227. doi: 10.1038/s41598-022-17001-9
- Rahimi E. S, Fooladi J, ebrahimipour G, Soudi M. R, Fooladi T. Isolation of fluorene degrading microorganisms from sediments of the Southern Caspian Sea Coasts and evaluation of their bioremediation potential. Journal of Microbial World. 2020; 13(13): 239-252 [In Persian]
- Orgiazzi A, Ballabio C, Panagos P, Jones A, Fernández-Ugalde O. LUCAS Soil, the largest expandable soil dataset for Europe: A review. Eur J Soil Sci. 2018; 69: 140–153. https://doi.org/10.1111/ejss.12499
- Jorfi S, Mohamadiyan G, Jaafarzadeh N, Esrafili A, Akbari H, Ali G. Bioremediation of Pyrene-Contaminated Soils Using Biosurfactant. Jentashapir Journal of Health Research. 2014; 5(5): e23228. https://doi.org/10.17795/jjhr-23228.
- Dastgheib S.M, Amoozegar M.A, Khajeh K, Shavandi M, Ventosa A. Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol. 2012; 95(3):789–798. https://doi.org/10.1007/s00253-011-3706-4
- Lin M, Hu X, Chen W, Wang H, Wang C. Biodegradation of phenanthrene by Pseudomonas sp. BZ-3, isolated from crude oil contaminated soil. Int Biodeterior Biodegradation. 2014; 94: 176–181. http://dx.doi.org/10.1016/j.ibiod.2014.07.011
- Liu X. X, Hu X, Cao Y, Pang W. J, Huang J. Y, Guo P, Huang L. Biodegradation of Phenanthrene and Heavy Metal Removal by Acid-Tolerant Burkholderia fungorum FM-2. Front Microbiol. 2019; 10: 408. https://doi.org/10.3389/fmicb.2019.00408
- Akhavan Sepahi.A, Dejban golpasha, Emami.M, Nakhoda.A.M. Isolation and characterization of crude oil degrading Bacillus spp. Iran.J.Environ.Health.Sci.Eng. 2008; 5:149-154.
- Nogueira Felix AK, Martins JJL, Lima Almeida JG, Giro MEA, Cavalcante KF, Maciel Melo VM, Loiola Pessoa OD, Ponte Rocha MV, Rocha Barros Gonçalves L, Saraiva de Santiago Aguiar R. Purification and characterization of a biosurfactant produced by Bacillus subtilis in cashew apple juice and its application in the remediation of oil-contaminated soil. Colloids Surf B. 2019; 175:256-263. https://doi:10.1016/j.colsurfb.2018.11.062
- Reddy MS, Naresh B, Leela T, Prashanthi M, Madhusudhan N.Ch, Dhanasri G, Prathibha Devi. Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Bioresour Technol. 2010; 101(20):7980-7983. https://doi.org/10.1016/j.biortech.2010.04.054
- Lee BB, Chan ES, Ravindra P, Khan TA. Surface tension of viscous biopolymer solutions measured using the du Nouy ring method and the drop weight methods. Polym. Bull. 69: 471-489. 2012. https://doi.org/10.1007/s00289-012-0782-2
- Lillo A, Ashley FP, Palmer RM, Munson MA, Kyriacou L, Weightman AJ, Wade WG. Novel subgingival bacterial phylotypes detected using multiple universal polymerase chain reaction primer sets. Oral Microbiol Immunol. 2006; 21:61–68
- Feng L, Chen Y, Ren J, Qu X. A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials. 2011; 32:2930–2937
- Firoozbakht M, Sepahi AA, Rashedi H, Yazdian F. Investigating the effect of nanoparticle on phenanthrene biodegradation by Labedella gwakjiensis strain KDI. Biodegradation. 2022; 33(5):441-460. https://doi.org/10.1007/s10532-022-09991-0
- Caglar G B, Eker S G. Prediction of Polycyclic Aromatic Hydrocarbons (PAHs) Removal from Wastewater Treatment Sludge Using Machine Learning Methods. Water Air Soil Pollut. 2021; 232: 87. https://doi.org/10.1007/s11270-021-05049-8
- Al Farraj DA, Elshikh MS, Al Khulaifi MM, Hadibarata T, Yuniarto A, Syafiuddin A. Biotransformation, and detoxification of antraquione dye green 3 using halophilic Hortaea sp. Int Biodeterior Biodegrad. 2019; 140:72–77
- Sarubbo L, Silva M, Durval I, Bezerra K, Ribeiro B, Silva I, Twigg M, Banat I, Biosurfactants: Production, properties, applications, trends, and general perspectives, Biochem. Eng. J. 2022; 181 https://doi.org/10.1016/j.bej.2022.108377.37.
- Aghaei S. S, Fakharian, Zolfaghary M. R, Soleimani M. Production and characterization of biosurfactant by indigenous halotolerant Microbacterium sp., isolated from Qom saline soils lake. Journal of Microbial World, 2020; 12(4): 423-438
- Sun S, Wang Y, Zang T, Wei J, Wu H, Wei C, Qiu G, Li F. A biosurfactant–producing Pseudomonas aeruginosa S5 isolated from coking wastewater and its application for bioremediation of polycyclic aromatic hydrocarbons. Bioresour. Technol. 2019; 281: 421–428.
- Gharaei S, Ohadi M, Hassanshahian M, Porsheikhali S, Forootanfar H. Isolation, Optimization, and Structural Characterization of Glycolipid Biosurfactant Produced by Marine Isolate Shewanella algae B12 and Evaluation of Its Antimicrobial and Anti-biofilm Activity. Appl Biochem Biotechnol. 2022;194(4):1755-1774. doi: 10.1007/s12010-021-03782-8.
- Zang T, Wu H, Yan B, Zhang Y, Wei C. Enhancement of PAHs biodegradation in biosurfactant/phenol system by increasing the bioavailability of PAHs. Chemosphere. 2021; 266:128941. https:// doi: 10.1016/j.chemosphere.2020.128941
- Govarthanan M, Khalifa AY, Kamala-Kannan S, Srinivasan P, Selvankumar T, Selvam K, Kim W. Significance of allochthonous brackish water Halomonas sp. on biodegradation of low and high molecular weight polycyclic aromatic hydrocarbons. Chemosphere. 2020; 243:125389.
- Sivaram AK, Logeshwaran P, Lockington R, Naidu R, Megharaj M. Low molecular weight organic acids enhance the high molecular weight polycyclic aromatic hydrocarbons degradation by bacteria. Chemosphere. 2019; 222:132-140.
- Sakshi, Singh SK, Haritash AK. Catabolic enzyme activities during biodegradation of three-ring PAHs by novel DTU-1Y and DTU-7P strains isolated from petroleum-contaminated soil. Arch Microbiol. 2021;203(6):3101-3110. https://doi.org/10.1007/s00203-021-02297-4
- 36. Bacosa H. P, Kang A, Lu K, Liu Z. Initial oil concentration affects hydrocarbon biodegradation rates and bacterial community composition in seawater. Marine pollution bulletin. 2021; 162, 111867. https://doi.org/1016/j.marpolbul.2020.111867
- Rabani MS, Sharma R, Singh R, Gupta M.K. Characterization and Identification of Naphthalene Degrading Bacteria Isolated from Petroleum Contaminated Sites and Their Possible Use in Bioremediation, Polycyclic Aromatic Compounds. 2022; 42:3, 978-989, https://doi.org/10.1080/10406638.2020.1759663
- Kong X, Dong R, King T, Chen F, Li H. Biodegradation Potential of Bacillus sp. PAH-2 on PAHs for Oil-Contaminated Seawater. Molecules. 2022; 27(3):687. https://doi.org/10.3390/molecules27030687
- Zhong Y, Luan T, Wang X, Lan C, Tam N.F. Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4. Appl. Microbiol. Biotechnol. 2007; 75, 175e186. https://doi.org/10. 1007/s00253-006-0789-4.
- Xu M, Wu M, Zhang Y, Zhang H, Liu W, Chen G, Xiong G, Guo L. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial mixture. Int. J. Environ. Sci. Technol. 2022; 19: 3833–3844 https://doi.org/10.1007/s13762-021-03284-4
41. Wang Y, Nie M, Diwu Z, Chang F, Nie H, Zhang B, Bai X, Yin Q. Toxicity evaluation of the metabolites derived from the degradation of phenanthrene by one of a soil ubiquitous PAHs-degrading strain Rhodococcus qingshengii FF. J. Hazard. Mater. 2021; 415: 125657. https://doi.org/10.1016/j.jhazmat.2021.125657
|