تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,151 |
تعداد دریافت فایل اصل مقاله | 54,843,815 |
Microbiological attributes, organic carbon, and soil hydrothermal regime under Copernicia prunifera waste application | ||
International Journal of Recycling Organic Waste in Agriculture | ||
مقاله 1، دوره 12، Special Issue، آبان 2023، صفحه 1-13 اصل مقاله (580.56 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.30486/ijrowa.2023.1954694.1428 | ||
نویسندگان | ||
A C Rodrigues1؛ C R do Nascimento2؛ L B S de Miranda1؛ A R L de Miranda3؛ R S de Sousa* 4؛ L A P L Nunes4 | ||
1Federal University of Piaui, Teresina, Piaui, Brazil | ||
2Technical College of Teresina, Teresina, Piaui, Brazil | ||
3Federal Institute of Maranhão, Caxias, Maranhão, Brazil | ||
4Department of Agricultural Engineering and Soil Science, Federal University of Piaui, Teresina, Brazil | ||
چکیده | ||
Purpose This study aimed to verify the effects of the application of carnauba waste on the biological attributes, organic carbon content, and hydrothermal regime of soil. Method The experiment was performed in randomized blocks with six treatments and four replicates. The treatments were as follows: (1) NPK (recommended dose of synthetic fertilizers: 100:180:86 kg ha-1 NPK); (2) surface application of 10 t ha-1 carnauba waste; (3) incorporation of 10 t ha-1 carnauba waste; (4) surface application of 10 t ha-1 carnauba waste + NPK; (5) incorporation of 10 t ha-1 carnauba waste + NPK; and (6) bare and unfertilized soil (control). Results Treatments that received carnauba waste showed higher amounts of organic carbon, carbon accumulation, microbial biomass, and CO2 in the surface layer of the soil, from 0.0 to 0.10 m, compared to control treatments. Although there was no difference in the respiration rates between the treatments, the metabolic quotient tended to decrease in the treatments that received carnauba waste. Treatment with carnauba waste resulted in a decreased soil bulk density in the surface layer. Soil covered with carnauba waste maintained higher soil moisture and lower temperatures. Multivariate analysis showed that applying carnauba waste with NPK to the soil surface significantly affected soil quality attributes. Conclusion The use of carnauba residue combined with fertilizer can improve the microbiological attributes of the soil, increase the organic carbon content in the soil, and reduce thermal amplitude, which can help maintain higher levels of moisture in the soil. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Agro-industrial waste؛ Carnauba palm؛ Organic fertilization؛ Soil temperature and moisture | ||
مراجع | ||
Akhtar K, Wang W, Ren G, Khan A, Feng Y, Yang G, Wang H (2019) Integrated use of straw mulch with nitrogen fertilizer improves soil functionality and soybean production. Environ Intern 132:92-105. https://doi.org/10.1016/j.envint.2019.105092 Albano FG, Cavalcante IHL, Machado JS, Lacerda CF, Silva ER, Sousa HG (2017) New substrate containing agroindustrial carnauba residue for production of papaya under foliar fertilization. Rev Bras Eng Agrí Ambient 21:128-133. https://doi.org/10.1590/1807-1929/agriambi.v21n2p128-133 Alef K, Nannipieri P (1995) Methods in soil microbiology and biochemistry. Academic, New York, NY Anderson JPE, Domsch KH (1993) The metabolic quotient (qCO2) as a specific activity parameter to asses the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Bioch 25:393-395. https://doi.org/10.1016/0038-0717(93)90140-7 Assis EPM, Cordeiro MAS, Paulino HB, Carneiro MAC (2003) Efeito da aplicação de nitrogênio na atividade microbiana e na decomposição da palhada de sorgo em solo de cerrado sob plantio direto. Pesq Agrop Trop 33:107-112 Awe GO, Reichert JM, Wendroth OO (2015) Temporal variability and covariance structures of soil temperature in a sugarcane field under different management practices in southern Brazil. Soil Till Res 150:93–106. https://doi.org/10.1016 / j.still.2015.01.013 Freitas L, Oliveira IA, Casagrande JC, Silva LS, Campos MCC (2018) Estoque de carbono de Latossolos em sistemas de manejo natural e alterado. Ciênc Flor 28:228-239. http://dx.doi.org/10.5902/1980509831575 Freixo AA, Machado PLOA, Guimarães CM, Silva CA, Fadigas FS (2002) Estoque de carbono e nitrogênio e distribuição de frações orgânicas de Latossolo do cerrado sob diferentes sistemas de cultivo. Rev Bras Ciênc Solo 26:425-434. https://doi.org/10.1590/S0100-06832002000200016 Gonçalves MPM, Silva MIO, Grugik MA, Feliciano ALP, Silva LB (2019) Substratos alternativos na produção de mudas de Harpalyce brasiliana BENTH. Oecol Aust 23:464-472. https://doi.org/10.4257/oeco.2019.2303.06 Guo Z, Han J, Li J et al (2019) Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLoS One 14:1–16. https://doi.org/10.1371/journal.pone.0211163 Islam KR, Weill RR (1998) Microwave irradiation of soil for routine measurement of microbial biomass carbon. Biol Fertil Soils 27:408-416. https://doi.org/10.1007/s003740050451 Jetter R, Kunst L (2008) Plant surfasse lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J 54:670-683. https://doi.org/10.1111/j.1365-313X.2008.03467.x Jin Z, Shah T, Zhang L, Liu H, Peng S, Nie L (2020) Effect of straw returning on soil organic carbon in rice–wheat rotation system: A review. Food Energy Secur9:1-13. https://doi.org/10.1002/fes3.200 Lacerda KAP, Cordeiro MAS, Vergtinassi A, Salgado FHM, Paulino HB, Carneiro MAC (2013) Organic carbon, biomass and microbial activity in an Oxisol under different management systems. Amazonian J Agric Environ Sci 56:249-254. https://doi.org/10.4322 / rca.2013.036 Liu Y, Wang J, Liu D, Li Z, Zhang G, Tao Y, Chen F (2014) Straw mulching reduces the harmful effects of extreme hydrological and temperature conditions in Citrus Orchards. Plos One 9:1 e87094. https://doi.org/10.1371/journal.pone.0087094 Moreira FMS, Siqueira JO (2006) Microbiologia e bioquímica do solo. 2.ed. Lavras: Editora UFLA 729 p Odum EP (1969) The strategy of ecosystems development. Science, 164:262-270 Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2021) Vegan: Community Ecology Package. R package version 2.5-7 Oliveira FNS, Lima AAC, Aquino ARL, Maia SMF (2002) Influência da cobertura morta no desenvolvimento de fruteiras tropicais. Fortaleza: Embrapa Agroindústria Tropical 24p Oliveira LS, Costa MCG, Souza HA, Blum J, Albuquerque GHS, Abreu MGP, Maia DS (2018) Characterization of organic wastes and effects of their application on the soil. J Agric Sci 10:291-298. https://doi.org/10.5539/jas.v10n6p291 Qui Y, Lv W, Wang X, Xi Z, Wang Y (2020) Long-term effects of gravel mulching and straw mulching on soil physicochemical properties and bacterial and fungal community composition in the Loess Plateau of China. European J Soil Biol 98:103-108. https://doi.org/10.1016/j.ejsobi.2020.103188 R Core Team R (2021) A language and environment for statistical computing. Vienna: R Foundation for statistical computing Reichert JM, Reinert DJ, Braida JA (2003) Qualidade dos solos e sustentabilidade de sistemas agrícolas. Ci Amb, 27:29-48 Santoja M, Fernandez C, Gauquelin T, Baldy V (2015) Climate change effects on litter decomposition: Intensive drought leads to a strong decrease of litter mixture interactions. Plant Soil 393:69-82. https://www.jstor.org/stable/43872155 Santos VB, Araújo ASF, Leite LFC, Nunes LAPL, Melo WJ (2012) Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma 170:227–231. https://doi.org/10.1016/j.geoderma.2011.11.007 Silva CF, Pereira MG, Miguel DL, Feitosa CF, Loss A, Menezes CEG, Silva EMR (2012) Carbono orgânico total, biomassa microbiana e atividade enzimática do solo de áreas agrícolas, florestais e pastagem no médio Vale do Paraíba do Sul (RJ). Rev Bras Ciên Solo 36:1680-1689. https://doi.org/10.1590/S0100-06832012000600002 Sousa PGR, Sousa JPF, Sousa AM, Costa RNT (2017) Produtividade do mamoeiro cultivado sob aplicação de cinzas vegetais e bagana de carnaúba. Rev Bras Agric Irrig 11:1201-1212. https://doi.org/10.7127/rbai.v11n100565 Souza AAL, Moreira FJC, Araújo BA, Lopes FGN, Silva MES, Carvalho BS (2016) Desenvolvimento inicial de duas variedades de alface em função de dois tipos de substratos e cobertura do solo. Brazilian J Biosys Engin 10:316-326. https://doi.org/10.18011/bioeng2016v10n3p316-326 Souza TEMS, Gonçalves EP, Pereira DS, Santos LM, Machado LS, Souza ER (2018) Redução da erosão em cultivo de sorgo com cobertura morta. Caatinga 31:730-736 Teixeira PC, Donagemma GK, Fontana A, Teixeira WG (2017) Manual de métodos de análise de solo. 3. ed. rev. e ampl. Brasília: Embrapa; Rio de Janeiro: Embrapa Solos Wang Q, Cao X, Jiang H, Guo Z (2020) Straw application and soil microbial biomass carbon change: A Meta‐Analysis. CLEAN-Soil Air Water 49:1-7. https://doi.org/10.1002/clen.202000386 Yan S, Song J, Fan J, Yan C, Dong S, Ma C, Gong Z (2020) Changes in soil organic carbon fractions and microbial community under rice straw return in Northeast China. Global Ecol Conserv 22:62-74. https://doi.org/10.1016/j.gecco.2020.e00962 Yang Y, Wu J, Zhao S, Han Q, Pan X, He F, Chen C (2018) Assessment of the responses of soil pore properties to combined soil structure amendments using X-ray computed tomography. Scien Repor 8:1-10. https://doi.org/10.1038/s41598-017-18997-1 Zribi W, Aragüés R, Medina E, Faci JM (2015) Efficiency of inorganic and organic mulching materials for soil evaporation control soil tillage research 148:40-45. https://doi.org/10.1016/j.still.2014.12.003 Zwirtes AL, Reinert DJ, Gubiani PI, Silva VR, Mulazzani RP, Somavilla A (2017) Temperature changes in soil covered by black oat straw. Pesq Agrop Bras 52:1127-1130. https://doi.org/10.1590/S0100-204X2017001100020
| ||
آمار تعداد مشاهده مقاله: 186 تعداد دریافت فایل اصل مقاله: 222 |