تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,624 |
تعداد مشاهده مقاله | 78,435,442 |
تعداد دریافت فایل اصل مقاله | 55,456,015 |
سازگاری و پایداری عملکرد دانه ژنوتیپهای کینوا (Chenopodium quinoa Wild) با استفاده از معیارهای مختلف پایداری | ||
اکوفیزیولوژی گیاهان زراعی | ||
دوره 17، 1 (65) بهار، اردیبهشت 1402، صفحه 1-14 اصل مقاله (348.5 K) | ||
نوع مقاله: علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.30495/JCEP.2023.1935024.1815 | ||
نویسندگان | ||
مریم اطاعتی1؛ محمدرضا اردکانی* 2؛ محمود باقری3؛ فرزاد پاک نژآد2؛ فرید گل زردی3 | ||
1دانشجوی دکتری گروه زراعت، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران | ||
2استاد گروه زراعت، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران | ||
3دانشیار موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران | ||
چکیده | ||
گیاه کینوا به دلیل ارزش غذایی مطلوب و پتانسیل بالای تولید به عنوان گیاه مناسب در شرایط نامساعد محیطی شناخته شده است. این گیاه در کشوری مانند ایران که دارای تنوع اقلیمی است باعث ایجاد امنیت غذایی، افزایش درآمد کشاورزان و تولید پایدار خواهد شد. بهمنظور بررسی اثر متقابل ژنوتیپ و محیط و تعیین سـازگاری و پایداری عملکرد دانه ژنوتیپ های کینوا در مناطق مختلف کشـور، تعداد ده ژنوتیپ در قالب طرح بلوک های کامل تصادفی با سه تکـرار در چهـار منطقه کرج، شهرکرد، ارومیه و کاشمر طی سال زراعی 1397-1396 ارزیابی شدند. ژنوتیپهای مورد بررسی شامل Titicaca،Red Carina، Giza1، Q12، Q18، Q21، Q22، Q26، Q29 و Q31 بودند. نتایج تجزیه واریانس مرکب نشان داد اثر محیط و اثر متقابل محیط و ژنوتیپ بر عملکرد دانه در سطح احتمال یک درصد معنیدار بود. بیشترین عملکرد دانه در کرج و شهرکرد (بهترتیب 717 و 2196 کیلوگرم در هکتار) توسط ژنوتیپ Q26 و در ارومیه و کاشمر (بهترتیب 1614 و 829 کیلوگرم در هکتار) بهترتیب توسط ژنوتیپ Q18 و Titicaca حاصل شد. با توجه به نتایج بررسی پایداری و سازگاری با روشها و معیارهای مختلف (پارامتری و ناپارامتری)، ژنوتیپ Red Carina با داشتن عملکرد دانه 996 کیلوگرم در هکتار بالاتر از میانگین عملکرد کل ژنوتیپ ها (939 کیلوگرم در هکتار)، بالاترین رتبه معیار گزینش هم زمان برای عملکرد و پایداری، کمترین میانگین رتبه (1/56) و حداقل انحراف معیار رتبه (1.03 =SD) به عنوان ژنوتیپ دارای عملکرد مطلوب و پایدار و سازگار با مناطق مورد بررسی شناسایی شد. | ||
کلیدواژهها | ||
پایداری عملکرد؛ ژنوتیپ؛ کینوا؛ محیط | ||
مراجع | ||
Ali, M., A. Elsadek, and E. Mohamed Salem. 2018. Stability parameters and AMMI analysis of quinoa (Chenopodium quinoa). Egyptian Journal of Agronomy. 40(1): 59-74. doi:10.21608/agro.2018.2916.1094 Angeli, V., P. Miguel Silva, D. Massuela, M. WaleedKhan, A. Hamar, F, Khajehei, S. Graeff-Honninger, and C. Piatti. 2020. Quinoa (Chenopodium quinoa): An overview of the potentials of the golden grain and socio-economic and environmental aspects of its cultivation and marketization. 9(2): 216. doi: 10.3390/foods9020216 Bagheri, M. Evaluation of compatibility of quinoa genotypes in Mashhad and Isfahan.Final Report of the Research Project.Seed and Plant Breeding Research Institute,Karaj, Iran. (In Persian). Bagheri, M. 2018b. Handbook of quinoa agriculture. Seed and Plant Breeding Research Institute, Karaj, Iran. (In Persian). Bazile, D., D. Bertero, and C. Nieto. 2015. State of the art report on quinoa around the world in 2013. Rome: Food and Agriculture Organization of the United Nations (FAO) & CIRAD. Bhargava, A., and S. Sirvastava. 2013. Quinoa botany. Production and uses. CAB International, Oxfordshire. Bhargava, A., S. Shukala, and D. Ohri. 2007. Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa). Field Crops Research. 101(1):104–116. doi: 10.1016/j.fcr.2006.10.001 Bhargava, A., S. Shukla, and D. Ohri. 2005. Analysis of genotype × environment interaction for grain yield in Chenopodium Czech Journal of Genetics and Plant Breeding. 4(2): 64-72. doi: 10.17221/3673-CJGPB Eberhart, S.A., and W.A. Russell. 1966. Stability parameters for comparing varieties. Crop Science. 6: 6-40. Francis, T.R., and G.N. Kannenberg. 1978. Yield stability studies in short-season maize. A descriptive method for grouping genotypes. Canadian Journal of Plant Science. 58: 1029-1034. doi: 10.4141/cjps78-157 Golabi, M., S. Lak, A. Gilani, M. Alavi Fazel, and A. Egdernezhad .2022. Growth index, yield and yield components of Quinoa (Chenopodium quinoa Willd) cultivars affected by date and method of planting at Ahvaz region. Journal of Crop Ecophysiology. 16: 411-434. doi:10.30495/JCEP.202201911931.1721 Hussain, M.I., A. Muscolo, M. Ahmed, M.A. Asghar, and A.J. Al-Dakheel. 2020. Agro-morphological, yield and quality traits and interrelationship with yield stability in quinoa (Chenopodium quinoa) genotypes under saline marginal environment. Plants. 9(12): 1763. doi: 10.3390/plants9121763 Jorfi, A., M. Alavifazel, A. Gilani, M.R. Ardakani, and S. Lack. 2022. Evaluation of root growth dynamics and yield components of Quinoa (Chenopodium quinoa) cultivars by changing phosphorus and zinc levels. Journal of Crop Ecophysiology.16: 473-455. doi:10.30495/JCEP.2023.1933283.1810 Kang, M.S. 1993. Simultaneous selection for yield and stability in crop performance trials: consequences for growers. Agronomy Journal. 85: 754-757. 10.2134/agronj1993.00021962008500030042x Miri, Kh. 2016. Evaluation of compatibility of quinoa genotypes to Iranshahr region. Final Report of the Research Project. Balochistan Agricultural and Natural Resources Research and Training Center (Iranshahr). Agricultural Education and Extension Research Organization, Iran. (In Persian).65 P. Mohebodini, M., H. Dehghani, and S.H. Sabaghpour. 2006. Stability of performance in lentil (Lens culinaris) genotypes in Iran. Euphytica. 149: 343-352. doi: 10.1007/s10681-006-9086-7 Molaei, 2018. Familiarity with quinoa and cultivation of its cultivars in Shahrekord. Research Project. Agricultural Research, Education and Extension Organization. Karaj, Iran. (In Persian). 38 P. Pour-Aboughadareh, A., M. Yousefian, H. Moradkhani, P. Poczai, and K.H.M. Siddique. 2019. STABILITYSOFT: A new online program to calculate parametric and non-parametric stability statistics for crop traits. Applications in Plant Sciences. 7(1): e1211. doi: 1002/aps3.1211 Sepahvand, N. A. 2013. Compatibility study, agronomic characteristics, phenological and quality value of quinoa plant in Iran.Final Report.Seed and Plant Breeding Research Institute. (In Persian). 66 P. Sharifian, H., S. Jamali, and F. Sajjadi. 2018. Investigation of the effect of different salinity levels on some morphological characteristics of quinoa under different irrigation regimes. Journal of Soil and Water Sciences. 22 (2): 15-27. (In Persian). doi: 22069/jwsc.2018.13721.2841 Shukla, G.K. 1972. Some statistical aspects of partitioning genotype - environmental components of variability. Heredity. 29: 237-245. doi:10.1038/hdy.1972.87 Thennarasu, K. 1995. On certain non- parametric procedures for studying genotype- environment interactions and yield stability. Ph.D. Thesis. P.J. School, IARI, New Dehli, India. Vahedi, M.R., E. Tohidi Nejad, and A. Pasandi Pour. 2021. Evaluation of yield and yield components of Quinoa (Chenopodium quinoa Willd) as affected by different planting densities. Journal of Crop Ecophysiology. 15: 593-608. doi: 10.30495/ jcep.2022.689808 Vasconcelos, E. S., M. Echer, M. Marcia de, M.A. Kliemann, and M. Júnior. 2019. Selection and recommend of quinoa (Chenopodium quinoa) genotypes based on the yield genotypic adaptability and stability. Revista Ceres. 66(2): 117-123. doi:10.1590/0034-737x201966020006 Wricke, G. 1962. Uber eine methode zur refassung der okologischen streubretite in feldversuchen. Flazenzuecht. 47: 92-96. | ||
آمار تعداد مشاهده مقاله: 146 تعداد دریافت فایل اصل مقاله: 187 |