تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,288 |
تعداد دریافت فایل اصل مقاله | 54,843,919 |
PCM, ETS-NOCV, and CDA investigations of interactions of a Cycloplatinated Thiosemicarbazone as antiparasitic and antitumor agents with C20 nano-cage | ||
International Journal of Nano Dimension | ||
دوره 14، شماره 3، دی 2023، صفحه 219-226 اصل مقاله (850.89 K) | ||
نوع مقاله: Reasearch Paper | ||
شناسه دیجیتال (DOI): 10.22034/ijnd.2023.1982969.2212 | ||
نویسندگان | ||
Amir Solgi1؛ Reza Ghiasi* 2؛ Sahar Baniyaghoob1 | ||
1Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran. | ||
2Department of Chemistry, Faculty of science, East Tehran Branch, Islamic Azad University, Tehran, Iran. | ||
چکیده | ||
In this work, we reported a computational investigation on the interaction between a cycloplatinated thiosemicarbazone (CT) as antiparasitic and antitumor agents with C20 molecule. The solvent impacts were considered by the SCRF based on PCM. The relationships of solvation energies, interaction energy, dipole moment, and N-H stretching frequencies (n(NH)) values with modified-Buckingham function were illustrated. ETS-NOCV, CDA, and EDA results provided valuable understanding into the interaction between two fragments. | ||
کلیدواژهها | ||
Cycloplatinated Thiosemicarbazones؛ C20 Molecule؛ Charge Decomposition Analysis (CDA)؛ Energy Decomposition Analysis (EDA)؛ Extended Transition State-Natural Orbitals for Chemical Valence (ETS-NOCV)؛ Polarizable Continuum Model (PCM) | ||
مراجع | ||
1 Moreno-Rodríguez A., Salazar-Schettino P. M., Bautista J. L., Hernández-Luis F., Torrens H., Guevara-Gómez Y., Pina-Canseco S., Torres M. B., Cabrera-Bravo M., Martinez C. M., Pérez-Campos E., (2014), In vitro antiparasitic activity of new thiosemicarbazones in strains of Trypanosoma cruzi. Europ. J. Medic. Chem. 87: 23-29. 2 Adams M., Kock C. D., Smith P. J., Land K. M., Liu N., Hopper M., Hsiao A., Burgoyne A. R., Stringer T., Meyer M., Wiesner L., Chibalea K., Smith G. S., (2015), Improved antiparasitic activity by incorporation of organosilane entities into half-sandwich ruthenium(II) and rhodium(III) thiosemicarbazone complexes. Dalton Trans. 44: 2456-2461. 3 Singh N. K., Kumbhar A. A., Pokharel Y. R., Yadav P. N., (2020), Anticancer potency of copper (II) complexes of thiosemicarbazones. J. Inorg. Biochem. 210: 111134. 4 Pósa V., Hajdu B., Tóth G., Dömötör O., Kowol C. R., Keppler B. K., Spengler G., Gyurcsik B., Enyedy É. A., (2022), The coordination modes of (thio)semicarbazone copper(II) complexes strongly modulate the solution chemical properties and mechanism of anticancer activity. J. Inorg. Biochem. 231: 111786. 5 Lobana T. S., Kaushal M., Bala R., Nim L., Paul K., Arora D. S., Bhatia A., Arora S., Jasinski J. P., (2020), Di-2-pyridylketone-N1-substituted thiosemicarbazone derivatives of copper(II): Biosafe antimicrobial potential and high anticancer activity against immortalized L6 rat skeletal muscle cells. J. Inorg. Biochem. 212: 111205. 6 González-Barcia L. M., Fernández-Fariña S., Rodríguez-Silva L., Bermejo M. R., González-Noya A. M., Pedrido R., (2020), Comparative study of the antitumoral activity of phosphine-thiosemicarbazone gold(I) complexes obtained by different methodologies. J. Inorg. Biochem. 203: 110931. 7 Cao W., Qi J., Qian K., Tian L., Cheng Z., Wang Y., (2019), Structure−activity relationships of 2‑quinolinecarboxaldehyde thiosemicarbazone gallium (III) complexes with potent and selective anticancer activity. J. Inorg. Biochem. 191: 174-182. 8 Bisceglie F., Bacci C., Vismarra A., Barilli E., Pioli M., Orsoni N., Pelosi G., (2020), Antibacterial activity of metal complexes based on cinnamaldehyde thiosemicarbazone analogues. J. Inorg. Biochem. 203: 110888. 9 Eissa S. I., Farrag A. M., Abbas S. Y., El Shehry M. F., Ragab A., Fayed E. A., Ammar Y. A., (2021), Novel structural hybrids of quinoline and thiazole moieties: Synthesis and evaluation of antibacterial and antifungal activities with molecular modeling studies. Bioorg. Chem. 110: 104803. 10 Ghanbari H., Cousins B. G., Seifalian A. M., (2011), A nanocage for nanomedicine: Polyhedral oligomeric silsesquioxane (POSS). Macromol. Rapid Commun. 32: 1032-1046. 11 Prinzbach H., Weiler A., Landenberger P., Wahl F., Worth J., Scott L. T., Gelmont M. D., Olevano D., Issendorff B. V., (2000), Gas-phase production and photoelectron spectroscopy of the smallest fullerene C20. Nature. 407: 60-63. 12 Chen Z., Heine T., Jiao H., Hirsch A., Thiel W., Schleyer P. V. R., (2004), Theoretical studies on the smallest fullerene: From monomer to oligomers and solid states. Chem. Eur. J. 10: 963-970. 13 Luo J., Peng L. M., Xue Z. Q., Wu J. L., (2004), Positive electron affinity of fullerenes: Its effect and origin. J. Chem. Phys. 120: 7998-8001. 14 Shahzad H., Ahmadi R., Adhami F., Najafpour J., (2020), Adsorption of cytarabine on the surface of fullerene C20: A comprehensive DFT study. Euras. Chem. Communic. 2: 162-169. 15 Ahmadi R., (2018), Investigating the effect of fullerene (C20) substitution on the structural and energetic properties of Tetryl by density functional theory. J. Phys. Theoret. Chem. 15: 15-25. 16 Moghaddam T. S. N., Nikmaram F. R., Ahmadi R., (2017), Density functional theory study of the Behavior of Carbon Nano cone, BP Nano cone and CSi Nano cone as Nano Carriers for 5-fluorouracil anticancer drug in water. Int. J. New Chem. 4: 72-77. 17 Ghiasi R., Fashami M. Z., Hakimioun A. H., (2014), A density functional approach toward structural features and properties of C20⋯N2X2 (X = H, F, Cl, Br, Me) molecules. J. Theoret. Comput. Chem. 13: 1450023. 18 Alavi H., Ghiasi R., Ghazanfari D., Akhgar M. R., (2014), Interaction of Fe(CO)4 with C20 cage in gas and solution phases: A theoretical study. Revue Roumaine de Chimie. 59: 883-891. 19 Alavi H., Ghiasi R., (2017), A theoretical study of the solvent effect on the interaction of C20 and N2H2. J. Struc. Chem. 58: 30-37. 20 Ghiasi R., Sadeghi N., (2017), Evolution of the interaction between C20 cage and Cr(CO)5: A solvent effect, QTAIM and EDA investigation. J. Theoret. Comput. Chem. 16: 1750007. 21 Kazemi Z., Ghiasi R., Jamehbozorgi S., (2019), A theoretical study of the influence of solvent polarity on the structure and spectral properties in the interaction of C20 and Si2H2. J. Nanoanal. 6: 121-128. 22 Ghiasi R., Rahimi M., Ahmadi R., (2021), Quantum-chemical investigation into the complexation of titanocene dichloride with C20 and M+@C20 (M+= Li, Na, K) cages. J. Struct. Chem. 61: 1681-1690. 23 Kazemi Z., Ghiasi R., Jamehbozorgi S., (2018), Analysis of the interaction between the C20 cage and cis-PtCl2(NH3)2: A DFT investigation of the solvent effect, structures, properties, and topologies. J. Struct. Chem. 59: 1044-1051. 24 Selvarengan P., Kolandaivel P., (2002), Studies of solvent effects on conformers of glycine molecule. J. Mol. Struct: THEOCHEM. 617: 99-106. 25 Allin S. B., Leslie T. M., Lumpkin R. S., (1996), Solvent effects in molecular hyperpolarizability calculations. Chem. Mater. 8: 428-432. 26 Aquino A. J. A., Tunega D., Haberhauer G., Gerzabek M. H., Lischka H., (2002), Solvent effects on hydrogen bondsA theoretical study. J. Phys. Chem. A. 106: 1862-1871. 27 Tomasi J., Mennucci B., Cammi R., (2005), Quantum mechanical continuum solvation models. Chem. Rev. 105: 2999-3094. 28 Springborg M., Specialist Periodical Reports: Chemical Modelling, Applications and Theory. Royal Society of Chemistry: Cambridge, UK, 2008; Vol. 5. 29 Li Y.-K., Wu H.-Y., Zhu Q., Fu K.-X., Li X.-Y., (2011), Solvent effect on the UV/Vis absorption spectra in aqueous solution: The nonequilibrium polarization with an explicit representation of the solvent environment. Comput. Theoret. Chem. 971: 65-72. 30 Ouennoughi Y., Karce H. E., Aggoun D., Lanez T., Morallon E., (2017), A novel ferrocenic copper (II) complex Salen-like, derived from 5-chloromethyl-2-hydroxyacetophenone and N-ferrocenmethylaniline: Design, spectral approach and solvent effect towards electrochemical behavior of Fc+/Fc redox couple. J. Organom. Chem. 848: 344-351. 31 Aydin M., Akins D. L., (2018), DFT studies on solvent dependence of electronic absorption spectra of free-base and protonated porphyrin. Computat. Theoret. Chem. 1132: 12-22. 32 Wu C.-l., Zhang S.-h., Gou R.-j., Ren F.-d., Zhu S.-f., (2018), Theoretical insight into the effect of solvent polarity on the formation and morphology of 2, 4, 6, 8, 10, 12-hexanitrohexaazaisowurtzitane (CL-20)/2, 4, 6- Trinitro-Toluene (TNT) cocrystal explosive. Computat. Theoret. Chem. 1127: 22-30. 33 Dos Santos H. F., Chagas M. A., De Souza L. A., Rocha W. R., De Almeida M. V., Anconi C. P. A., De Almeida W. B., (2017), Water solvent effect on theoretical evaluation of 1H-NMR chemical shifts: O-Methyl-Inositol isomer. J. Phys. Chem. A. 121: 2839-2846. 34 Ganesan M., Vedamanickam N., Paranthaman S., (2018), Studies of intramolecular H-bond interactions and solvent effects in the conformers of glycolic acid - A quantum chemical study. J. Theoret. Computat. Chem. 17: 1850009. 35 Shen D., Su P., Wu W., (2018), What kind of neutral halogen bonds can be modulated by solvent effects? Phys. Chem. Chem. Phys. 20: 26126-26139. 36 Bi T.-J., Xu L.-K., Wang F., Li X.-Y., (2018), Solvent effects for vertical absorption and emission processes in solution using a self-consistent state specific method based on constrained equilibrium thermodynamics. Phys. Chem. Chem. Phys. 20: 13178-13190. 37 Milani N. N., Ghiasi R., Forghaniha A., (2020), The impact of solvent polarity on the stability, electronic properties and 1H NMR chemical shift of the conformers of 2-chloro-3-methylcyclohexan-1-one oxime: A conceptual DFT approach. J. Appl. Spectros. 86: 1123-1131. 38 Kamrava S., Ghiasi R., Marjani A., (2021), The conductor-like polarizable continuum model (CPCM) study of Indenyl effect on ligand substitution reaction in the (h5-C9H7)Co(CO)2 complex. Int. J. Chem. Kinet. 53: 901-912. 39 Parsa P., Ghiasi R., Marjani A., (2021), Unveiling the influence of solvent polarity on structural, electronic properties, and 31P NMR parameters of rhenabenzyne complex. Inorg. Chem. Communic. 124: 108479. 40 Kamrava S., Ghiasi R., Marjani A., (2021), Structure, electronic properties and slippage of cyclopentadienyl and indenyl ligands in the (h5-C5H5) (h3-C5H5) W(CO)2 and (h5-C9H7) (h3-C9H7)W(CO)2 complexes: A C-PCM investigation. J. Molec. Liq. 329: 115535. 41 Ghiasi R., Emami R., Sofiyani M. V., (2021), Cyclometalation in the (h3-C5H5)Co(h2-C2H2)(PMe3) and (h3-C9H7)Co(h2-C2H2) (PMe3) complexes: A computational investigation. J. Molec. Liq. 325: 115097. 42 Ghiasi R., Milani N. N., (2021), Exploring of the solvent effect on the electronic structure and 14N NMR chemical shift of cyclic-N3S3Cl3: A computational investigation. Russ. J. Phys. Chem. B. 15: S14-S21. 43 Chellan P., Land K. M., Shokar A., Au A., An S. H., Clavel C. M., Dyson P. J., Kock C. D., Smith P. J., Chibale K., Smith G. S., (2012), Exploring the versatility of cycloplatinated Thiosemicarbazones as antitumor and antiparasitic agents. Organomet. 31: 5791−5799. 44 Ghiasi R., Valizadeh A., (2023), Computational investigation of interaction of a cycloplatinated thiosemicarbazone as antitumor and antiparasitic agents with B12N12 nano-cage. Res. Chem. 5: 100768. 45 Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., J. A. Montgomery J., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2013. 46 Hay P. J., (1977), Basis sets for molecular calculations - representation of 3D orbitals in transition-metal atoms. J. Chem. Phys. 66: 4377-4384. 47 Krishnan R., Binkley J. S., Seeger R., Pople J. A., (1980), Self consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72: 650-654. 48 McLean A. D., Chandler G. S., (1980), Contracted gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18. J. Chem. Phys. 72: 5639-5648. 49 Wachters A. J. H., (1970), Gaussian basis set for molecular wavefunctions containing third-row atoms. J. Chem. Phys. 52: 1033-1036. 50 Rappoport D., Furche F., (2010), Property-optimized gaussian basis sets for molecular response calculations. J. Chem. Phys. 133: 134105 51 Andrae D., Haeussermann U., Dolg M., Stoll H., Preuss H., (1990), Energy-adjusted ab initio pseudopotentials for the 2nd and 3rd row transition-elements. Theor. Chim. Acta. 77: 123-141. 52 Vydrov O. A., Scuseria G. E., Perdew J. P., (2007), Tests of functionals for systems with fractional electron number. J. Chem. Phys. 126: 154109. 53 Vydrov O. A., Scuseria G. E., (2006), Assessment of a long range corrected hybrid functional. J. Chem. Phys. 125: 234109. 54 Tawada Y., Tsuneda T., Yanagisawa S., Yanai T., Hirao K., (2004), A long-range-corrected time-dependent density functional theory. J. Chem. Phys. 120: 8425-8431. 55 Vydrov O. A., Heyd J., Krukau A., Scuseria G. E., (2006), Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. J. Chem. Phys. 125: 074106. 56 Tomasi J., Mennucci B., Cammi R., (2005), Quantum mechanical continuum solvation models. Chem. Rev. 105: 2999-3093. 57 Lu T., Chen Q., (2022), Independent gradient model based on Hirshfeld partition: A new ethod for visual study of interactions in chemical systems. J. Comput. Chem. 43: 539-544. 58 Xiao M., Lu T., (2015), Generalized charge decomposition analysis (GCDA) method. J. Adv. Phys. Chemistry. 4: 111-124. 59 Lu T., Chen F., (2012), Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comp. Chem. 33: 580-592. 60 Humphrey W., Dalke A., Schulten K., (1996), VMD-Visual molecular dynamics. J. Mol. Graphics. 14: 33-38. 61 Beka'rek V., Mikulecka A., (1978), A note on evaluation of solvent shifts in IR spectroscopy. Collect. Czech. Chem. Commun. 43: 2879-2881. 62 Mitoraj M. P., Michalak A., Ziegler T., (2009), Combined charge and energy decomposition scheme for bond analysis. Chem. Theory Comput. 5: 962-975. 63 Michalak A., Mitoraj M., Ziegler T., (2008), Bond orbitals from chemical valence theory. J. Phys. Chem. A. 112: 1933-1939. 64 Ziegler T., Rauk A., (1977), On the calculation of bonding energies by the Hartree Fock Slater method. Theor. Chim. Acta. 46: 1-10. | ||
آمار تعداد مشاهده مقاله: 276 تعداد دریافت فایل اصل مقاله: 375 |