تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,629 |
تعداد مشاهده مقاله | 78,551,791 |
تعداد دریافت فایل اصل مقاله | 55,722,979 |
ساخت کامپوزیت لایهای TaC-TiC/ TaC-TiC-Graphene و بررسی مقاومت به اکسیداسیون آن | ||
تحقیقات در علوم مهندسی سطح و نانو مواد | ||
دوره 1، شماره 4، اسفند 1401، صفحه 35-44 اصل مقاله (1.44 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
امیرمحمد جعفری؛ زهره بلک* | ||
گروه مهندسی مواد، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران | ||
چکیده | ||
در این پژوهش به منظور بررسی اثر گرافن برمقاومت به اکسیداسیون، ابتدا کامپوزیت لایه ای TaC-TiC-SiC/TaC-TiC-SiC-G با روش تفجوشی پلاسمای جرقه ای در دمای ˚ 185۰c، در زمان 8min و فشار 35Mpa تفجوشی شد. برای بررسی مقاومت به اکسیداسیون، نمونه در دماهای 400، 500، 600 و c˚ 700 برای مدت 30 دقیقه در کوره جعبه ای تحت اتمسفر هوا قرار گرفت. برای بررسی مقاومت به اکسیداسیون نمونه ها از آنالیز الگوی پراش پرتو ایکس و آنالیز حرارتی و همچنین تصویربرداری از نمونه ها با میکروسکوپ الکترونی روبشی انجام شد. نتایج نشان داد، افزایش دما با کاهش وزن برای نمونه ها همراه بود که بیانگر تجزیه و اکسیداسیون کاربید تانتالوم، کاربید تیتانیوم، کاربید سیلیکن و گرافن می باشد. نتایج XRD نشان داد که طی فرآیند اکسیداسیون فازهایی چون Ta2O5و SiO2 در ریزساختار نمونه تشکیل می شوند و مقدار آن ها با افزایش دما، افزایش می یابد. مشخص شد که رشد دانه تا دمای ˚600c به مقدار ناچیز بود ولی در دماهای بالاتر رشد دانه چشمگیری اتفاق افتاد. همچنین مشخص شد که تا زیر دمای ˚900c همه فعل و انفعالات گرمازا بودند و بالاتر از آن فعل و انفعال گرماگیر در یک مرحله اتفاق افتاد. | ||
کلیدواژهها | ||
تانتالوم کاربید؛ کامپوزیت؛ گرافن؛ تفجوشی با جرقه پلاسما؛ مقاومت به اکسیداسیون | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] W.G. Fahrenholtz, G.E .Hilmas "Ultra-high temperature ceramics: materials for extreme environments." Scripta materialia, 129 (2017) 94-99. [2] E .Wuchina, A. Bellosi. "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications." Proceedings of the the Electrochemical Society Symposium, August. (2008). [3] K. Hackett, Sh. Verhoef, R. A. Cutler, D. K. Shetty. "Phase constitution and mechanical properties of carbides in the Ta–C system." Journal of the American Ceramic Society , 10 (2009) 2404-2407. [4] S. Aritonang, W. S. Ezha Kurniasari, R. Juhana , T. Herawan, Analyzing tantalum carbide (TaC) and hafnium carbide (HfC) for spacecraft material. In Recent Trends in Manufacturing and Materials Towards Industry 4.0: Selected Articles from iM3F 2020, (2021) 925-933. [5] S. Oyama, Introduction to the chemistry of transition metal carbides and nitrides, Chapman and Hall, (1996). [6] Justin, J. F. (2013, May). Sintering and properties of Ultra High Temperature Ceramics for aerospace applications. In ODAS ( 2013). [7] A. Kalluri, "Spark Plasma Sintering of Tantalum Carbide and Graphen Reinforced Tantalum Carbide Composites," Thesis for Master of Science, Oklahama State University,( 2012). [8] P.D.F. ICDD, International Centre for Diffraction Data, Powder Diffraction File, Newtown Square, Pennsylvania, USA, (1997). [9] W. C. Yohe and A. L. Ruoff, "Ultrafine-Grain Tantalum Carbide by High Pressure Hot Pressing," Ceram. Bull, , 12 (1978) 647-651. [10] M. H. Leipold and P. F. Becher, "Pressure-Densification in Tantalum Carbide," Ceram. Bull, 7 (1970) 641-651 [11] L. Silvestroni, A. Bellosi, C. Melandri, D. Sciti, J.X. Liu, G.J. Zhang, "Microstructure and properties of HfC and TaC-based ceramics obtained by ultrafine powder," Journal of the European Ceramic Society, 4 (2011) 619–627. [12] O. Cedillos-Barrazaa, S. Grasso, N. Al Nasiri, D. D. Jayaseelan, M. J. Reece, W. E. Lee, "Sintering behaviour, solid solution formation and characterisation of TaC, HfC and TaC-HfC fabricated by spark plasma sintering," Journal of the European Ceramic Society, 7 (2016) 1539–1548. [13] H. Liu, L. Liu, F. Ye, Zh. Zhang, Y. Zhou, "Microstructure and mechanical properties of the spark plasma sintered TaC/SiC composites: Effects of sintering temperatures," Journal of the European Ceramic Society, 13 (2012) 3617–3625. [14] B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company(1978). [15] ا. منشی, س. سلطان عطار, بهکارگیری روشی نوین در اندازهگیری نانو ذرات با استفاده از رابطه شرر و پراش پرتو ایکس, فرآیندهای نوین در مهندسی مواد 2 (2008) 9-19. [16] H. Kafashan, F. Jamali-Sheini, M. Azizieh, Z. Balak, M. Cheraghizade, H. Nasiri Vatan, Electrochemical deposition of nanostructured SnS1−xTex thin films and their surface characterization, Journal of Alloys and Compounds 694 (2017) 1338-1347. [17] ح. کفاشان, ز. بلک, بررسی اثر آلایش ایندیوم بر خواص ساختاری و نوری لایههای نازک سولفید قلع تهیه شده با روش الکتروانباشت, فصلنامه علمی - پژوهشی مواد نوین 8 (2018) 43-56. [18] A. Nisar, A. S, T. Venkateswaran, N. Sreenivas, K. Balani, Oxidation studies on TaC based ultra-high temperature ceramic composites under plasma arc jet exposure, Corrosion Science, 109 (2016) 50-61. [19] R. Yousefi, M.R. Mahmoudian, A. Sa΄aedi, M. Cheraghizade, F. Jamali-Sheini, M. Azarang, Effect of annealing temperature and graphene concentrations on photovoltaic and NIR-detector applications of PbS/rGO nanocomposites, Ceramics International, 42 (2016) 15209-15216. [20] M. Yoshimura, J.-i. Kase, S. Sōmiya, Oxidation of SiC powder by high-temperature, high-pressure H2O, Journal of Materials Research 1 (2011) 100-103. 10.1557/JMR.1986.0100. [21] M. Gherrab, V. Garnier, S. Gavarini, N. Millard-Pinard, S. Cardinal, Oxidation behavior of nano-scaled and micron-scaled TiC powders under air, International Journal of Refractory Metals and Hard Materials 41 (2013) 590-596. [22] P. Gabbott, Principles and Applications of Thermal Analysis, Wiley2008. | ||
آمار تعداد مشاهده مقاله: 40 تعداد دریافت فایل اصل مقاله: 30 |