- [1] Shockley W. & Queisser H. J. “Detailed balance limit of efficiency of p-n junction solar cells”. Appl. Phys. 32, 510-519 (1961).
- [2] Luque A. & Marti A. “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels”. Phys. Rev. Lett. 78, 5014-5017 (1997).
- [3] Bruns, W. Seifert, P. Wawer, H. Winnicke, D. Braunig, and H. Wagemann, “Improved efficiency of crystalline silicon solar cells due to he+ implantation”. Applied Physics Letters, vol. 64, no. 20, pp. 2700–2, 1994.
- [4] J. Keevers and M. A. Green, Sol. Energy Mater. Sol. Cells 41 195 (1996).
- [5] Kasai, T. Sato, and H. Matsumura, “Impurity photovoltaic effect in crystalline silicon solar cells”, in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997 (Cat. No.97CB36026), 1997, pp. 215–18.
- [6] P. Bremner, R. Corkish, and C. B. Honsberg, “Detailed balance efficiency limits with quasi-fermi level variations”, IEEE Transactions on Electron Devices, vol. 46, no. 10, pp. 1932–9, 1999.
- [7] L M. Green, “Prospects for photovoltaic efficiency enhancement using low-dimensional structures”. Nanotechnology, vol. 11, no. 4, pp. 401–5, 2000.
- [8] Barnham, B. Braun, J. Nelson, M. Paxman, C. Button, J. Roberts, and C. Foxon, “Short-circuit current and energy efficiency enhancement in a low-dimensional structure photovoltaic device”, Applied Physics Letters, vol. 59, no. 1, pp. 135–7, 1991.
- [9] Mart´ı, L. Cuadra, and A. Luque, “Quantum dot intermediate band solar cell”, in Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference, Anchorage, AK, USA, 2000, pp. 940–3.
- Mart´ı, E. Antol´ın, C. Stanley, C.Farmer, N. L´opez, P. D´ıaz, E. C´anovas, P. Linares, and A. Luque, “Production of photocurrent due to intermediate-to-conduction-band transitions: A demonstration of a key operating principle of the intermediate-band solar cell”, Physical Review Letters, vol. 97, no. 24, pp. 247 701/1–4, 2006.
- G. Norman, M. C. Hanna, P. Dippo, D. H. Levi, R. C. Reedy, J. S.Ward, and M.M. Al-Jassim, “InGaAs/GaAs QD superlattices: MOVPE growth, structural and optical characterization, and application in intermediate-band solar cells”, in Conference Record of the 31st IEEE Photovoltaic Specialists Conference, Orlando, FL, USA, 2005, pp. 43–8.
- Y. Levy and C. Honsberg, “Nanostructured absorbers for multiple transition solar cells”, IEEE Transactions on Electron Devices, vol. -, no. -, p. in print, 2008.
- Yu, W. Walukiewicz, J.W. Ager III, D. Bour, R. Farshchi, O. Dubon, S. Li, I. Sharp, and E. Haller, “Multiband GaNAsP quaternary alloys”, Applied Physics Letters, vol. 88, no. 9, p. 092110, 2006.
- Shan, W. Walukiewicz, J.W. Ager III, E. Haller, J. Geisz, D. Friedman, J. Olson, and S. Kurtz, “Band anticrossing in gainnas alloys”, Physical Review Letters, vol. 82, no. 6, pp. 1221 – 4, 1999.
- Walukiewicz, K. Yu, J. Wu, J.W. Ager III, W. Shan, M. Scrapulla, O. Dubon, and P. Becla, “Highly mismatched alloys for intermediate band solar cells”, Thin-Film Compound Semiconductor Photovoltaics. Symposium (Materials Research Society Symposium Proceedings Vol.865), pp. 125–30, 2005.
- Luque, A., and Steven Hegedus. “Handbook of Photovoltaic Science and Engineering”. Chichester, West Sussex, U.K.: Wiley, 2011. Print.
- Martí A, Cuadra L, Luque A. ”Quantum dot intermediate band solar cell”. IEEE: Proc. 28th IEEE Photovoltaics Specialists Conference, New York, 2000.
- Luque A, Martí A, Stanley C, López N, Cuadra L, Zhou D, Mc-Kee A. “General equivalent circuit for intermediate band devices: potentials, currents and electroluminescence”. Journal of Applied Physics 2004; 96(1): 903–909.
- Berryman KW, Lyon SA, Segev M. “Mid-infrared photoconductivity in InAs quantum dots”. Applied Physics Letters 1997; 70(14): 1861–1863.
- Liu HC, Duboz JY, Dudek R, Wasilewski ZR, Fafard S, Finnie P. “Quantum dot infrared photodetectors”. Physica E: Low-dimensional Systems and Nanostructures 2003; 17: 631–633.
- Luque A, Marti A, Antolin E, Garcia-Linares P. “Intraband absorption for normal illumination in quantum dot intermediate band solar cells”. Solar Energy Materials and Solar Cells 2010; 94: 2032–2035.
- Luque A, Marti A, Mellor A, Fuertes Marron D, Tobias I & Antolin E. “Absorption coefficient for the intraband transitions in quantum dot materials”. Prog. Photovolt: Res. Appl. (2012);
- Luque A, Martí A, Antolín E, Linares PG, Tobías I, Ramiro I, Hernandez E. “New Hamiltonian for a better understanding of the quantum dot intermediate band solar cells”. Solar Energy Materials and Solar Cells 2011; 95(8): 2095–2101.
- Nozawa T. & Arakawa Y. “Detailed balance limit of the efficiency of multilevel intermediate band solar cells”. Appl. Phys. Lett. 98, 171108 (2011).
|