- Lucy, L. B., A Numerical Approach to The Testing of The Fission Hypothesis, Astronomical Journal, Vol. 82, 1977, pp. 1013-1024.
- Gingold, R. A., Monaghan, J. J., Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars, Monthly Notices of The Royal Astronomical Society, Vol. 181, No. 3, 1977, pp. 375–389.
- Gingold, R. A., Monaghan, J. J., Kernel Estimates as A Basis for General Particle Methods in Hydrodynamics, Journal of Computational Physics, Vol. 46, No. 3, 1982, pp. 429-453.
- Morris, J. P., Fox, P. J., and Zhu, Y., Modeling Low Reynolds Number Incompressible Flows Using SPH, Journal of Computational Physics, Vol. 136, No. 1, 1997, pp. 214-226.
- Sefid, M., Fatehi, R., and Shamsoddini, R., A Modified Smoothed Particle Hydrodynamics Scheme to Model the Stationary and Moving Boundary Problems for Newtonian Fluid Flows, ASME Journal of Fluids Engineering, Vol. 137, No. 3, 2015, pp. 031201-9.
- Shadloo, M. S., Zainali, A., Sadek, S. H., and Yildiz, M., Improved Incompressible Smoothed Particle Hydrodynamics Method for Simulating Flow Around Bluff Bodies, Computer Methods in Applied Mechanics and Engineering, Vol. 200, No. 9-12, 2011, pp. 1008-1020.
- Hashemi, M. R., Fatehi, R., and Manzari, M. T., SPH Simulation of Interacting Solid Bodies Suspended in A Shear Flow of An Oldroyd-B Fluid, Journal of Non-Newtonian Fluid Mechanics, Vol. 166, No. 21-22, 2011, pp. 239-1252.
- Shamsoddini, R., Aminizadeh, and N., Sefid, M., An Improved WCSPH Method To Simulate the Non-Newtonian Power-Law Fluid Flow Induced by Motion of a Square Cylinder, CMES-Computer Modeling in Engineering & Sciences, Vol. 105, No. 3, 2015, pp. 209-230.
- Farrokhpanah, A., Samareh, B., Rentschler, and Mostaghimi, J., Applying Contact Angle to A Two-Dimensional Multiphase Smoothed Particle Hydrodynamics Model, ASME Journal of Fluids, Vol. 137, No. 4, 2015, pp. 041303-12.
- Shadloo, M. S., Zainali, A., and Yildiz, M., Simulation of Single Mode Rayleigh–Taylor Instability by SPH Method, Computational Mechanics, Vol. 51, No. 5, 2013, pp. 699-715.
- Shamsoddini, R., Sefid, M., and Fatehi, R., Lagrangian Simulation and Analysis of The Micromixing Phenomena in A Cylindrical Paddle Mixer Using a Modified Weakly Compressible Smoothed Particle Hydrodynamics Method, Asia-Pacific Journal of Chemical Engineering, Vol. 10, No. 1, 2015, pp. 112-122.
- Shamsoddini, R., Sefid, M., and Fatehi, R., ISPH Modelling and Analysis of Fluid Mixing in A Microchannel with An Oscillating or A Rotating Stirrer, Engineering Applications of Computational Fluid Mechanics, Vol. 8, No. 2, 2014, pp. 289-298.
- Shamsoddini, R., Sefid, M., Lagrangian Simulation and Analysis of The Power-Law Fluid Mixing in The Two-Blade Circular Mixers Using a Modified WCSPH Method, Polish Journal of Chemical Technology, Vol. 17, No. 2, 2015, pp. 1-10.
- Shamsoddini, R., Sefid, M., and Fatehi, R., Incompressible SPH Modeling and Analysis of Non-Newtonian Power-Law Fluids, Mixing in A Microchannel with An Oscillating Stirrer, Journal of Mechanical Science and Technology, Vol. 30, No. 1, 2016, pp. 307-316.
- Hashemi, M. R., Fatehi, R., and Manzari, M. T., A Modified SPH Method For Simulating Motion of Rigid Bodies in Newtonian Fluid Flows, International Journal of Non-Linear Mechanics, Vol. 47, No. 6, 2012, pp. 626-638.
- Rostami, V. M., Ketabdari, M. J., Numerical Simulation of Solitary Wave Breaking and Impact on Seawall Using a Modified Turbulence Sph Method with Riemann Solvers, Journal of Marine Science and Technology, Vol. 20, No. 2, 2015, pp. 344-356.
- Violeau, D., Issa, R., Numerical Modelling of Complex Turbulent Free-Surface Flows with The SPH Method: An Overview, International Journal for Numerical Methods in Fluids, Vol. 53, No. 2, 2007, pp. 277–304.
- Omidvar, P., Nikeghbali, P., Simulation of Violent Water Flows Over a Movable Bed Using Smoothed Particle Hydrodynamics, Journal of Marine Science and Technology, Vol. 22, No. 2, 2017, pp. 270-287.
- Lee, E. S., Moulinec, C., Xu, R., Violeau, D., Laurence, D., and Stansby, P., Comparisons of Weakly Compressible and Truly Incompressible Algorithms for the SPH Mesh Free Particle Method, Journal of Computational Physics, Vol. 227, No. 18, 2008, pp. 8417–8436.
- Kim, S. Y., Kim, K. H., Trudell, R. W., and Kim, Y., Comparative Study on Model-Scale Sloshing Tests, Journal of Marine Science and Technology, Vol. 17, No. 1, 2012, pp. 47-58.
- Zou, C. F., Wang, D. Y., Cai, Z. H., and Li, Z., The Effect of Liquid Viscosity on Sloshing Characteristics, Journal of Marine Science and Technology, Vol. 20, No. 4, 2015, pp. 765-775.
- Hou, L., Li, F., and Wu, C., A Numerical Study of Liquid Sloshing in A Two-Dimensional Tank Under External Excitations, Journal of Marine Science and Application, Vol. 11, 2012, pp. 305-310.
- Godderidge, B., Turnock, S., Tan, M., and Earl, Ch., An Investigation of Multiphase CFD Modelling of a Lateral Sloshing Tank, Computers and Fluids, Vol. 38, No. 2, 2009, pp. 183–193.
- Cao, X. Y., Ming, F. R., and Zhang, A. M., Sloshing in a Rectangular Tank Based on SPH Simulation, Applied Ocean Research, Vol. 47, 2014, pp. 241–254.
- Gotoh, H., Khayyer, A., Ikari, T., Arikawa, H., and Shimosako, K., On Enhancement of Incompressible SPH Method For Simulation of Violent Sloshing Flows, Applied Ocean Research, Vol. 46, 2014, pp. 104–115
- De Chowdhury, S., Sannasiraj, S. A., Numerical Simulation of 2D Sloshing Waves Using SPH with Diffusive Terms, Applied Ocean Research, Vol. 47, 2014, pp. 219–240.
- Shao, J. R., Li, H. Q., Liu, G. R., and Liu, M. B., An Improved SPH Method for Modeling Liquid Sloshing Dynamics, Computers & Structurest, Vol. 100-101, 2012, pp. 18–26.
- Acevedo-Malave, A., Modelling the Formation of Clusters of Drops by Means of The Flocculation and Coalescence Phenomena with Smoothed Particle hydrodynamics, CFD Letters, Vol. 5, No. 3, 2013, pp. 43-56.
- Dehnen, W., Aly, H., Improving Convergence in Smoothed Particle Hydrodynamics Simulations Without Pairing Instability, Monthly Notices of the Royal Astronomical Society, Vol. 425, No. 2, 2012, pp. 1068-1082.
- Bonet, J., Lok, T. S., Variational and Momentum Preservation Aspects of Smooth Particle Hydrodynamic Formulation, Computer Methods in Applied Mechanics and Engineering, Vol. 180, 1999, pp. 97-115.
- Aly, A. M., Lee, S. W., Numerical Simulations of Impact Flows with Incompressible Smoothed Particle Hydrodynamics, Journal of Mechanical Science and Technology, Vol. 28, No. 6, 2014, pp. 2179-2188.
- Shamsoddini, R., Aminizadeh, N., Incompressible Smoothed Particle Hydrodynamics Modelling and Investigation of Fluid Mixing in A Rectangular Stirred Tank with A Free Surface, Chemical Engineering Communications, Vol. 204, No. 5, 2017, pp. 563–572.
|