- Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science, vol. 254, pp. 1178–1181, 1991.
- Kostanyan, G. Wollstein, and J. S. Schuman, “New developments in optical coherence tomography,” Current opinion in ophthalmology, vol.26, pp. 110, 2015.
- F. Fercher and E. Roth, “Ophthalmic laser interferometry,” In Optical instrumentation for biomedical laser applications, vol. 658, pp. 48-51. 1986.
- K. Hitzenberger, “Optical measurement of the axial eye length by laser Doppler interferometry,” Investigative ophthalmology & visual science, vol. 32, pp. 616-624, 1991.
- G. Fujimoto, S. de Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, and A. Oseroff, “Femtosecond optical ranging in biological systems,” Optics letters, vol.11, pp. 150-152, 1986.
- Everett, S. Magazzeni, T. Schmoll, and M. Kempe, “Optical coherence tomography: From technology to applications in ophthalmology,” Translational Biophotonics, vol.3, pp. e202000012, 2021.
- Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High-quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Optics express, vol. 18, pp. 14685-14704, 2010.
- Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, , “High-quality 3-D imaging with multimegahertz OCT,” Optics and Photonics News, vol. 21, pp. 28-28, 2010.
- S. Kim, J. Joo, I. Shin, P. Shin, W. J. Kang, B. J. Vakoc, and W. Y. Oh, “9.4 MHz A-line rate optical coherence tomography at 1300 nm using a wavelength-swept laser based on stretched-pulse active mode-locking,” Scientific Reports, vol. 10, pp. 9328 (1-9), 2020.
- Grelet, P. B. Montague, and A. Podoleanu, “Towards sub-5 µm axial resolution OCT from a multi-MHz swept source,” In High-Speed Biomedical Imaging and Spectroscopy VIII, Vol. 12390, pp. 43-46, 2023.
- F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun., vol. 117, pp. 43–48, 1995.
- Brinkmeyer and R. Ulrich, “High-resolution OCDR in dispersive wave-guides,” Electronics Letters, vol.6, pp. 413–414, 1990.
- R. Chinn, E.A. Swanson, and J.G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. vol. 22, pp.340–342, 1997.
- Golubovic, B.E. Bouma, G.J. Tearney, and J.G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser,” Opt. Lett. vol. 22, pp. 1704–1706, 1997.
- F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Optics communications, vol. 117, pp. 43-48, 1995
- C. K. H. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Applied optics, vol.36, pp.6548-6553, 1997.
- Hausler, and M. W. Lindner, “"Coherence radar" and "spectral radar" -new tools for dermatological diagnosis,” Journal of biomedical optics, vol. 3, pp.21-31, 1998.
- Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” Journal of biomedical optics, vol.7, pp. 457-463. 2002.
- P. Ivanov, A. P. Chaikovskii, and A. A. Kumeisha, “New method for high-range resolution measurements of light scattering in optically dense inhomogeneous media,” Optics Letters, vol. 1, pp.226-228, 1977.
- K. Hitzenberger. Low-coherence interferometry from: Handbook of Visual Optics CRC Press, 2017.
- M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Applied optics, vol.37, pp. 2788-2797, 1998.
- K. Wang, “Modelling optical properties of soft tissue by fractal distribution of scatterers,” Journal of Modern Optics, vol.47, pp. 103-120, 2000.
- K. Wang and Z. Ma, "Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography," Optics letters, vol.31, pp. 3001-3003, 2006.
- Leitgeb, C.K. Hitzenberger, and A.F. Fercher, “Performance of fourier domain vs. time domainoptical coherence tomography,” Opt. Express, vol.11, pp.889–894, 2003.
- F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. vol. 28, pp. 2067–2069, 2003.
- A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express, vol. 11, pp. 2183–2189, 2003.
- Drexler and J. G. Fujimoto, Eds. Optical coherence tomography: technology and applications. 2nd ed. Switzerland: Springer International Publishing, Ch. 7, 2015.
- F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Reports on progress in physics, vol.66, pp. 239–303, 2003.
- Drexler and J. G. Fujimoto, Eds. Optical coherence tomography: technology and applications. 2nd ed. Switzerland: Springer International Publishing, Ch. 9, 2015.
- Aumann, S. Donner, J. Fischer, and F. Müller, “Optical coherence tomography (OCT): principle and technical realization,” High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics, pp.59-85, 2019.
- T. Schwarz, F. Kopp, T. Weig, C. Eichler, and U.Strauss, “Superluminescent light emitting diodes of 100mW output power for pico-projection,” Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Optical Society of America, MH2-3, 2013.
- M. Milani, A. Asgari, “The effects of carrier transport phenomena on the spectral and power characteristics of blue superluminescent light emitting diodes,” Physica E, vol.69, pp. 165-170,2015.
- N. Kurbatov, S. S. Shakhidzhanv, L. V. V. krapukhin, and S. I. Kolonenkova, “Investigation of superluminescence emitted by a gallium arsenide diode,” Sov. Phys. Semicond. vol.4, pp. 1739, 1971.
- C. Culter, S.A. Newton, H.J. Show, “Limitation of rotation sensing by scattering,” Opt. Lett. vol. 5, pp. 488–490, 1980.
- Drexler and J. G. Fujimoto, Eds. Optical coherence tomography: technology and applications. 2nd ed. Switzerland: Springer International Publishing, 2015.
- M. Milani, V. Mohadesi, A. Asgari, “The effects of temperature dependent recombination rates on performance of InGaN/GaN blue superluminescent light emitting diodes,” Physica E, vol.71, pp.64-69, 2015.
- M. Milani, V. Mohadesi, and A. Asgari, "A novel theoretical model for broadband blue InGaN/GaN superluminescent light emitting diodes," Journal of Applied Physics, vol.117, pp.054502, 2015.
- Matuschek and M. Duelk, “Modeling and simulation of superluminescent light-emitting diodes (SLEDs),” IEEE J. Sel. Top. Quantum Electron. vol. 19, pp. 7800307, 2013.
- thorlabs.com
- R. Chinn, E. A. Swanson, J. G. Fujimoto, “Optical coherence tomography using a frequency tunable optical source,” Opt. Lett. vol.22, pp. 340–342 1997.
- A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express, vol.11, pp. 2183–2189, 2003.
- H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express, vol.11, pp. 2953–2963, 2003.
- Klein and R. Huber, “High-speed OCT light sources and systems,” Biomedical optics express, vol. 8, pp. 828-859, 2017.
- Chen, B. Potsaid, Y. Li, J. Lin, Y. Hwang, E. M. Moult, J. Zhang, D. Huang, and J. G. Fujimoto, “High speed, long range, deep penetration swept source OCT for structural and angiographic imaging of the anterior eye,” Scientific Reports, vol.12, pp. 992 (1-14), 2022.
- Zheng, Y. Bai, Z. Xu, P. Liu, and G. Ni, “Optical coherence tomography for three-dimensional imaging in the biomedical field: a review,” Frontiers in Physics, pp. 552 (1-13), 2021.
- Drexler and J. G. Fujimoto, Eds. Optical coherence tomography: technology and applications. 2nd ed. Switzerland: Springer International Publishing, Ch. 46, 2015.
- Drexler and J. G. Fujimoto, Eds. Optical coherence tomography: technology and applications. 2nd ed. Switzerland: Springer International Publishing, Ch. 41, 2015.
- Chen, Functional optical coherence tomogoraphy, in Frontiers in Biomedical Engineering, Ed. by N. H. C. Hwang, S. L. -Y. Woo Kluwer Academic/Plenum, New York, 2003.
- Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. vol. 22, pp. 64–66, 1997.
- J. Srinivasan, S. Sakadzic, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express, vol.18, pp. 2477–2494, 2010
- A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Optics Express, vol. 11, pp. 3116-3121, 2003.
- R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography,” Optics express, vol. 11, pp.3490-3497, 2003.
- Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Optics letters, vol. 25, pp. 1448-1450, 2000.
- A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Optics letters, vol. 29, 171-173, 2004.
- Ong, A. Zarnegar, G. Corradetti, S. R. Singh, and J. Chhablani, “Advances in optical coherence tomography imaging technology and techniques for choroidal and retinal disorders,” Journal of Clinical Medicine, vol. 11, pp. 5139, 2022.
- H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. vol. 6, pp. 474–479, 2001.
- Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. vol. 27, pp. 1610–1612, 2002.
- Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. vol. 45, pp. 2606–2612, 2004.
- Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. vol. 7, pp. 618–627, 2002.
- Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Optics express, vol. 17, pp.4151-4165, 2009.
- Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt Express, vol.18, pp.13964–13980, 2010.
- G. Sayegh, S. Zotter, P. K. Roberts, M. M. Kandula, S. Sacu, D. P. Kreil, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization-Sensitive Optical Coherence Tomography and Conventional Retinal Imaging Strategies in Assessing Foveal Integrity in Geographic Atrophy,” Investig. Ophthalmol. Vis. Sci, vol. 56, pp. 5246–5255, 2015.
- Pircher, C. K. Hitzenberger, U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. vol. 30, pp. 431–451, 2011.
- Ueno, H. Mori, K. Kikuchi, M. Yamanari, and T. Oshika, “Visualization of Anterior Chamber Angle Structures With Scattering- and Polarization-Sensitive Anterior Segment Optical Coherence Tomography,” Transl. Vis. Sci. Technol. vol.10, pp. 1-9 2021,
- Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. vol. 9, pp. 47–74, 2004.
- F. Spaide and D. R. Lally, “High Resolution Spectral Domain Optical Coherence Tomography of Multiple Evanescent White Dot Syndrome,” Retinal Cases and Brief Reports, 2022.
- Drexler and J. G. Fujimoto, Eds. Optical coherence tomography: technology and applications. 2nd ed, Switzerland: Springer International Publishing, Ch. 25, 2015.
- Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. vol. 27, pp. 530–532, 2002.
- Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. vol. 41, pp. 805–812, 2002.
- Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. vol. 43, pp.2874–2882, 2004.
- Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. vol. 49, pp. 1227–1234, 2004.
- Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. vol. 23, pp. 244–246, 1998.
- Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, and M. Paques, “Appearance of the Retina With Full-Field Optical Coherence Tomography,” Investig. Ophthalmol. Vis. Sci. vol. 57, OCT96–OCT104, 2016.
- Song, J. Xu, and R. K. Wang, “Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source,” Biomed. Opt. Express, vol.7, pp.4734–4748, 2016.
- Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express, vol. 19, pp. 3044–3062, 2011.
- Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt Express. vol. 14, pp. 3225–3237, 2006.
- J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. vol. 56, R1, 2011.
- M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express, vol. 3, pp. 199–211, 1998.
- Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging, vol. 13, pp. 111–134, 1991.
- Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science, vol. 269, pp. 1854–1857, 1995.
- W. Babcock, “The possibility of compensating astronomical seeing,” In Publications of the Astronomical Society of the Pacific, 386th Ed.; The Astronomical Society of the Pacific: San Francisco, WI, USA, vol. 65, pp. 229–236, 1953.
- Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, and P. S. J. Russell, “Submicrometer axial resolution optical coherence tomography,” Optics letters, vol. 27, pp.1800-1802, 2002.
- Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light: Science & Applications, vol. 4, pp. e334-e334, 2015.
- P. Ehlers, D. S. Petkovsek, A. Yuan, R. P. Singh, and S. K. Srivastava, “Intrasurgical assessment of subretinal tPA injection for submacular hemorrhage in the PIONEER study utilizing intraoperative OCT,” Ophthalmic Surg. Lasers Imaging Retin. vol. 46, pp. 327–332, 2015.
- S. Grewal, O. M. Carrasco-Zevallos, R. Gunther, J. A. Izatt, C. A. Toth, and P. Hahn, “Intra-operative microscope-integrated swept-source optical coherence tomography guided placement of Argus II retinal prosthesis,” Acta Ophthalmol. vol.95, pp. e431–e432, 2017.
- A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography,” Radiology, vol. 208, pp. 81–86, 1998.
- A. Boppart, M. E. Brezinski, C. Pitris, and J. G. Fujimoto, “Optical coherence tomography for neurosurgical imaging of human intracortical melanoma,” Neurosurgery, vol. 43, pp. 834–841, 1998.
- Song, K. K. Chu, S. Kim, M. Crose, B. Cox, E. T. Jelly, J. N. Ulrich, and A. Wax, “First Clinical Application of Low-Cost OCT. Transl,” Vis. Sci. Technol. vol.8, p.61, 2019.
- R. Rufai, “Handheld optical coherence tomography removes barriers to imaging the eyes of young children,” Eye, vol. 36, pp. 907–908, 2022.
- Nicholson, D. Osborne, L. Fairhead, L. Beed, C. M. Hill, and H. Lee, “Segmentation of the foveal and parafoveal retinal architecture using handheld spectral-domain optical coherence tomography in children with Down syndrome,” Eye, vol. 36, pp. 963–968, 2022.
- S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Investig. Ophthalmol. Vis. Sci., vol. 51, pp. 2678–2685, 2010.
- Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. vol. 119, pp. 1179 (1-7), 2001.
- Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett. vol. 25, pp. 1520–1522, 2000.
- A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Top. Quantum Electron. vol. 18, pp. 1184–1191, 2012.
- V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. vol. 76, pp. 064301–064306 (1-7), 2005.
- A. McLaughlin, X. Yang, B. C. Quirk, D. Lorenser, R. W. Kirk, P. B. Noble, and D. D. Sampson, “Static and dynamic imaging of alveoli using optical coherence tomography needle probes,” J. Appl. Physiol. vol. 113, pp. 967–974, 2012.
- Tan, M. Shishkov, A. Chee, M. Applegate, B. Bouma, and M. Suter, “Flexible transbronchial optical frequency domain imaging smart needle for biopsy guidance,” Biomed. Opt. Express, vol. 3, pp. 1947–1954, 2012.
- Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. vol. 13, p. 020505 (1-3), 2008.
- Zhao, Y. Huang, and J. U. Kang, “Sapphire ball lens-based fiber probe for common-path optical coherence tomography and its applications in corneal and retinal imaging,” Opt. Lett. vol. 37, pp. 4835–4837, 2012.
- S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C. M. Tang, and J. M. “Schmitt, Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. vol. 10, pp. 051603 (1-11), 2005.
- Sun, K. K. Lee, B. Vuong, M. D. Cusimano, A. Brukson, A. Mauro, N. Munce, B. K. Courtney, B. A. Standish, and V. X. Yang, “Intraoperative handheld optical coherence tomography forward-viewing probe: physical performance and preliminary animal imaging,” Biomed. Opt. Express, vol. 3, pp. 1404 (1-9), 2012.
|