تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,629 |
تعداد مشاهده مقاله | 78,552,267 |
تعداد دریافت فایل اصل مقاله | 55,725,070 |
On The Spectrum of Countable MV-algebras | ||
Transactions on Fuzzy Sets and Systems | ||
مقاله 11، دوره 2، شماره 2، بهمن 2023، صفحه 184-193 اصل مقاله (240.54 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.30495/tfss.2023.1991906.1082 | ||
نویسنده | ||
Giacomo Lenzi* | ||
Department of Mathematics, University of Salerno, Fisciano (SA), Italy. | ||
چکیده | ||
In this paper we consider MV-algebras and their prime spectrum. We show that there is an uncountable MV-algebra that has the same spectrum as the free MV-algebra over one element, that is, the MV-algebra $Free_1$ of McNaughton functions from $[0,1]$ to $[0,1]$, the continuous, piecewise linear functions with integer coefficients. The construction is heavily based on Mundici equivalence between MV-algebras and lattice ordered abelian groups with the strong unit. Also, we heavily use the fact that two MV-algebras have the same spectrum if and only if their lattice of principal ideals is isomorphic. As an intermediate step we consider the MV-algebra $A_1$ of continuous, piecewise linear functions with rational coefficients. It is known that $A_1$ contains $Free_1$, and that $A_1$ and $Free_1$ are equispectral. However, $A_1$ is in some sense easy to work with than $Free_1$. Now, $A_1$ is still countable. To build an equispectral uncountable MV-algebra $A_2$, we consider certain ``almost rational'' functions on $[0,1]$, which are rational in every initial segment of $[0,1]$, but which can have an irrational limit in $1$. We exploit heavily, via Mundici equivalence, the properties of divisible lattice ordered abelian groups, which have an additional structure of vector spaces over the rational field. | ||
کلیدواژهها | ||
MV-algebras؛ Prime spectrum؛ Lattice ordered abelian groups | ||
مراجع | ||
[1] Anderson M. and Feil T. Lattice-ordered groups. An introduction. Reidel Texts in the Mathematical Sciences. Dordrecht: D. Reidel Publishing Co.; 1988. x+190. DOI: https://doi.org/10.1007/978-94-009-2871-8 [2] Barbieri G, Di Nola A and Lenzi G. Topological classes of MV-algebras. Submitted. [3] Belluce L P. Semisimple algebras of infinite-valued logic and bold fuzzy set theory. Canad. J. Math. 1986; 38(6): 1356-1379. DOI: https://doi.org/10.4153/cjm-1986-069-0 [4] Bigard A, Keimel K and Wolfenstein S. Groupes et anneaux réticulés. (French) Lecture Notes in Mathematics, Vol. 608. Berlin-New York: Springer-Verlag; 1977. DOI: https://doi.org/10.1007/bfb0067004 [5] Cignoli R, D’Ottaviano I and Mundici D. Algebraic foundations of many-valued reasoning. Trends in Logic-Studia Logica Library, 7. Dordrecht: Kluwer Academic Publishers; 2000. DOI: https://doi.org/10.1007/978-94-015-9480-6 [6] Di Nola A. Representation and reticulation by quotients of MV-algebras. Ric. Mat. 1991; 40(2): 291-297. DOI: https://doi.org/10.1007/11587.1827-3491 [7] Di Nola A and Lenzi G. The spectrum problem for Abelian ℓ-groups and MV-algebras. Algebra Universalis 2020; 81(39), Paper No. 39, 43 pp. DOI: https://doi.org/10.1007/s00012-020-00668-4 [8] Di Nola A and Leustean I. Lukasiewicz logic and Riesz spaces. Soft Comput. 2014; 18(12): 2349-2363. DOI: https://doi.org/10.1007/s00500-014-1348-z [9] Mundici D. Advanced Lukasiewicz calculus and MV-algebras. Trends in Logic-Studia Logica Library, 35. Dordrecht: Springer; 2011. https://doi.org/10.1007/978-94-007-0840-2 [10] Mundici D. Interpretation of AF C∗-algebras in Lukasiewicz sentential calculus. J. Funct. Anal. 1986; 65(1): 15-63. DOI: https://doi.org/10.1016/0022-1236(86)90015-7 [11] Stone M. The theory of representations of Boolean algebras. Trans. Amer. Math. Soc. 1936; 40(1): 37-111. DOI: https://doi.org/10.2307/1989664 [12] Stone M. Topological representation of distributive lattices and Brouwerian logics. Casopis Pest. Mat. Fys. 1938; 67(1): 1-25. DOI: https://doi.org/10.21136/cpmf.1938.124080 [13] Wehrung F. Spectral spaces of countable Abelian lattice-ordered groups. Trans. Amer. Math. Soc. 2019; 371(3): 2133-2158. DOI: https://doi.org/10.1090/tran/7596 | ||
آمار تعداد مشاهده مقاله: 59 تعداد دریافت فایل اصل مقاله: 209 |