| تعداد نشریات | 418 |
| تعداد شمارهها | 10,013 |
| تعداد مقالات | 83,708 |
| تعداد مشاهده مقاله | 79,623,920 |
| تعداد دریافت فایل اصل مقاله | 56,297,963 |
Generalized Hankel shifts and exact Jackson{Stechkin inequalities in L2 | ||
| Theory of Approximation and Applications | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 02 آبان 1402 | ||
| نوع مقاله: Research Articles | ||
| نویسنده | ||
| Tilektes tileubayev* | ||
| МКМ, математический факультет, Евразийский Национальный Университет | ||
| چکیده | ||
| Abstract In this paper, we have solved several extremal problems of the best mean-square approximation of functions f, on the semiaxis with a power-law weight. In the Hilbert space L2 with a power-law weight $t^{2\alpha+1}$ we obtain Jackson{Stechkin type inequalities between the value E_{\sigma}(f) of the best approximation of a function f(t) by partial Hankel integrals S_{\sigma}(f) over the bessel functions of the rst kind and the kth-order generalized modulus of smoothnes$w_{k}(B^{r}f; t), where B is some second{order dierential operator. | ||
| کلیدواژهها | ||
| Best approximation؛ modullus smoothness؛ Hankel transformations | ||
|
آمار تعداد مشاهده مقاله: 43 |
||