تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,800,502 |
تعداد دریافت فایل اصل مقاله | 54,843,308 |
Generalized Hankel shifts and exact Jackson{Stechkin inequalities in L2 | ||
Theory of Approximation and Applications | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 02 آبان 1402 | ||
نوع مقاله: Research Articles | ||
نویسنده | ||
Tilektes tileubayev* | ||
МКМ, математический факультет, Евразийский Национальный Университет | ||
چکیده | ||
Abstract In this paper, we have solved several extremal problems of the best mean-square approximation of functions f, on the semiaxis with a power-law weight. In the Hilbert space L2 with a power-law weight $t^{2\alpha+1}$ we obtain Jackson{Stechkin type inequalities between the value E_{\sigma}(f) of the best approximation of a function f(t) by partial Hankel integrals S_{\sigma}(f) over the bessel functions of the rst kind and the kth-order generalized modulus of smoothnes$w_{k}(B^{r}f; t), where B is some second{order dierential operator. | ||
کلیدواژهها | ||
Best approximation؛ modullus smoothness؛ Hankel transformations | ||
آمار تعداد مشاهده مقاله: 42 |