- Ajeeb R., Clegg R., (2023), Intrathecal delivery of macromolecules: Clinical status and emerging technologies. Adv. Drug Del. Rev. 199: 114949-114952.
https://doi.org/10.1016/j.addr.2023.114949
- Chena K., Zhoua R., Donga X., Lia Y., (2023), An efficient stochastic steering strategy of magnetic particles in vascular networks. bioRxiv. 02.23.529635.
https://doi.org/10.1101/2023.02.23.529635
- Shen Y., Zhang J., Xu Y., Sun S., Chen K., Chen S., Yang X., Chen X., (2023), Ultrasound-enhanced brain delivery of edaravone provides additive amelioration on disease progression in an ALS mouse model. Brain Stimulation. 16: 628-641.
https://doi.org/10.1016/j.brs.2023.03.006
- Zheng Q., Xia B., Huang X., Luo J., Zhong S., Li X., (2023), Nanomedicines for high intensity focused ultrasound cancer treatment and theranostics (Review). Exp. Therap. Medic. 25: 1-11.
https://doi.org/10.3892/etm.2023.11869
- Haider Adawiya J., Norhana A., (2023), Targeted delivery of paclitaxel drug using polymer-coated magnetic nanoparticles for fibrosarcoma therapy: In vitro and in vivo studies. Sci. Rep. 13: 1-24.
https://doi.org/10.1038/s41598-023-30221-x
- Moradi Kashkooli F., Anshuman J., Tyler K., Hornsby J., (2023), Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions. J. Cont. Releas. 355: 552-578. .
https://doi.org/10.1016/j.jconrel.2023.02.009
- Sengupta S., Khatua C., Jana A., Balla V., (2018), Use of ultrasound with magnetic field for enhanced in vitro drug delivery in colon cancer treatment. J. Mater. Res. 33: 625-637.
https://doi.org/10.1557/jmr.2018.43
- Duncan B., Guangming Zh., Dave Hu., Yongqiang Q., (2023), Ultrasound-mediated ocular drug delivery: From physics and instrumentation to future directions. Micromach. 14: 1575-1579.
https://doi.org/10.3390/mi14081575
- Ghodsi M., Malmir M., Lashgari N., Badiei A., (2019), The role of hollow magnetic nanoparticles in drug delivery. RSC Adv. 9: 25094-25106.
https://doi.org/10.1039/C9RA01589B
- Delma Kouka L., Penoy N., Abdoul K., Egrek S., Sacheli R., Grignard B., Hayette M., (2023), Use of supercritical CO2 for the sterilization of liposomes: Study of the influence of sterilization conditions on the chemical and physical stability of phospholipids and liposomes. Europ. J. Pharmac. Biopharmac. 183: 112-118.
https://doi.org/10.1016/j.ejpb.2023.01.002
- Deepakkumar M., Gade S., Pathak V., Vora L., Mcloughlin K., Medina R., Donnelly R., Raghu P., (2023), Ocular application of electrospun materials for drug delivery and cellular therapies. Drug Discov. Today. 28: 103676.
https://doi.org/10.1016/j.drudis.2023.103676
- Alaa M., Romani M., Anirudh B., Rahman B., Verron E., Badran Z., (2023), Drug delivery systems in regenerative medicine: An updated review. Pharmaceutics. 15: 695-699.
https://doi.org/10.3390/pharmaceutics15020695
- Ahmadvand S., Kargar Razi M., Sadeghi B., Mirfazli S. S., (2022), Fe3O4@SiO2@CeO2 as a potential nanomagnetic carrier for oral delivery system and release of celecoxib. Comb. Chem. & High Throughput Screening. 25: 1973-1984.
https://doi.org/10.2174/1386207324666210910160716
- Ahmadvand S., Kargar Razi M., Sadeghi B., Mirfazli S. S., (2022), Development and evaluation of nanomagnetic carrier for the controlled loading and release of celecoxib. J. Adv. Mater. Process. 10: 13-26.
- Kemmerling C., Maxim E., Eaton P., (2010), Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting. Medic. Phys., 37: 175-182.
https://doi.org/10.1118/1.3271344
- Furlani E. P., (2010), Magnetic biotransport: Analysis and applications. Materials. 3: 2412-2446.
https://doi.org/10.3390/ma3042412
- Feynman R., Leighton. R., Sands M., (1964), The feynman lectures on physics, addison-wesley publishing company. 129 Pages.
https://doi.org/10.1063/1.3051743
- Setyaningsih M., Yanasin N., Supardi S., Taufiq Z., Sunaryono A., (2019), Phase and magnetic properties of Fe3O4/SiO2 natural materials-based using polyethylene glycol media. IOP Conf. Ser. Mater. Sci. Eng. 515: 012017-012021.
https://doi.org/10.1088/1757-899X/515/1/012017
- Fleisch D. A., (2008), Student's Guide to Maxwell's Equations. Cambridge University Press. Cambridge, UK, New York.
- Shapiro B., Probst R., Potts E., Diver D., Lubbe A., (2007), Control to concentrate drug-coated magnetic particles to deep-tissue tumors for targeted cancer chemotherapy. Proceed. 46th IEEE Conf. Decision and Control. New Orleans. 3901-3906.
- Kim S. A., (2002), Study of non-newtonian viscosity and yield stress of blood in a scanning capillary-tube rheometer (A). Drexel University. 442 pages.
- Loth E., (2008), Drag of non-spherical solid particles of regular and irregular shape. Powder Technol. 182: 342-353.
https://doi.org/10.1016/j.powtec.2007.06.001
- Peng H. M., Zhu P. C., Lu P. H., (2017), Acoustic streaming simulation and analyses in in vitro low frequency sonophoresis. Sensors and Actuators A: Physical. 263.
https://doi.org/10.1016/j.sna.2017.05.046
- Yan To Ling., Martin E., Treeby B. E., (2015), A discrete source model for simulating bowl-shaped focused ultrasound transducers on regular grids: Design and experimental validation. 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, Taiwan, pp. 1-4.
https://doi.org/10.1109/ULTSYM.2015.0281
- Huang J., Holt R. G., Cleveland R. O., Roy R. A., (2004), Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms. J. Acous. Soc. Am. 116: 2451-2458.
https://doi.org/10.1121/1.1787124
|