تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,148 |
تعداد دریافت فایل اصل مقاله | 54,843,811 |
Position Accuracy Improvement of the Inertial Navigation System using LSTM Algorithm without GNSS Signals | ||
Majlesi Journal of Electrical Engineering | ||
مقاله 5، دوره 18، شماره 1، خرداد 2024، صفحه 45-53 اصل مقاله (1007.41 K) | ||
نوع مقاله: Reseach Article | ||
شناسه دیجیتال (DOI): 10.30486/mjee.2023.1992635.1192 | ||
نویسندگان | ||
Mohammad Sabzevari1؛ Masoudreza Aghabozorgi Sahaf* 2 | ||
1Electrical Engineering Department, Yazd university, Yazd, IRAN | ||
2Electrical Engineering Department, Yazd University, Yazd, Iran. | ||
چکیده | ||
Currently, satellite navigation systems on cars provide a promising means of making these vehicles unmanned in the future. There is a common problem with these systems due to the unavailability of satellite signals in tunnels, forests, and noisy areas. One of the methods used to solve this problem is by using inertial navigation systems as an auxiliary system. This system works by modeling errors and correcting them when GNSS signals are absent. A number of methods are available for error modeling such as Kalman filters, neural networks, and so on, each of which has its own advantages and disadvantages. The error of inertial navigation is modeled using LSTM deep neural networks in this article. In this neural network, the relationship between current and past data is modeled as long as the GNSS satellite signal is available to improve the output position of the inertial navigation system when the GNSS satellite signal can no longer be received. The proposed method has been tested on real car driving data, and the calculated position from the inertial navigation system in four maneuvers has been compared with the Extended Kalman Filter method outputs. According to the results of the experiments, the proposed algorithm has improved the position estimation by 60% on average during 30, 60, and 120 seconds without GNSS signals, compared to the inertial navigation system based on Extended Kalman filter. | ||
کلیدواژهها | ||
Inertial Navigation System؛ GNSS؛ LSTM؛ Deep learning؛ Extended Kalman Filter؛ IMU | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 158 تعداد دریافت فایل اصل مقاله: 167 |