- Agarwal, Y., Rajinikanth, P., Ranjan, S., Tiwari, U., Balasubramnaiam, J., Pandey, P., Deepak, P. 2021. Curcumin loaded polycaprolactone-/polyvinyl alcohol-silk fibroin based electrospun nanofibrous mat for rapid healing of diabetic wound: An in-vitro and in-vivo studies. International Journal of Biological Macromolecules, 176:376-386.
- Alhajj, M., Goyal, A. 2021. Physiology, granulation tissue. In StatPearls [Internet]: StatPearls Publishing.
- Alven, S., Aderibigbe, B.A. 2021. Hyaluronic acid-based scaffolds as potential bioactive wound dressings. Polymers, 13(13):2102.
- Alven, S., Khwaza, V., Oyedeji, O.O., Aderibigbe, B.A. 2021. Polymer-based scaffolds Loaded with aloe vera extract for the treatment of wounds. Pharmaceutics, 13(7):961.
- Alven, S., Nqoro, X., Aderibigbe, B.A. 2020. Polymer-based materials loaded with curcumin for wound healing applications. Polymers, 12(10):2286.
- Barbu, A., Neamtu, B., Zăhan, M., Iancu, G. M., Bacila, C., Mireșan, V. 2021. Current trends in advanced alginate-based wound dressings for chronic wounds. Journal of Personalized Medicine, 11(9):890.
- Bašić-Kes, V., Zavoreo, I., Rotim, K., Bornstein, N., Rundek, T., Demarin, V. 2011. Recommendations for diabetic polyneuropathy treatment. Acta Clinica Croatica, 50(2):289-302.
- Blanco-Fernandez, B., Castaño, O., Mateos-Timoneda, M.Á., Engel, E., Pérez-Amodio, S. 2021. Nanotechnology approaches in chronic wound healing. Advances in Wound Care, 10(5):234-256.
- Bryant, R., Nix, D. 2015. Acute and chronic wounds: current management concepts: Elsevier Health Sciences, 648 p.
- Buckley, C., Murphy, E.J., Montgomery, T. R., Major, I. 2022. Hyaluronic acid: a review of the drug delivery capabilities of this naturally occurring polysaccharide. Polymers, 14(17): 3442.
- Cañedo-Dorantes, L., Cañedo-Ayala, M. 2019. Skin acute wound healing: a comprehensive review. International journal of inflammation, 2019:3706315.
- Catanzano, O., Quaglia, F., Boateng, J. S. 2021. Wound dressings as growth factor delivery platforms for chronic wound healing. Expert Opinion on Drug Delivery, 18(6):737-759.
- Chittleborough, C., Grant, J., Phillips, P., Taylor, A. 2007. The increasing prevalence of diabetes in South Australia: the relationship with population ageing and obesity. Public Health, 121(2);92-99.
- Dai, L., Cheng, T., Duan, C., Zhao, W., Zhang, W., Zou, X., Ni, Y. 2019. 3D printing using plant-derived cellulose and its derivatives: A review. Carbohydrate Polymers, 203:71-86.
- Derakhshan, M.A., Nazeri, N., Khoshnevisan, K., Heshmat, R., Omidfar, K. 2022. Three-layered PCL-collagen nanofibers containing melilotus officinalis extract for diabetic ulcer healing in a rat model. Journal of Diabetes and Metabolic Disorders, 21(1):313-321.
- Deshmukh, S.N., Dive, A. M., Moharil, R., Munde, P. 2016. Enigmatic insight into collagen. Journal of oral and maxillofacial pathology: JOMFP, 20(2):276.
- Diaz-Gomez, L., Gonzalez-Prada, I., Millan, R., Da Silva-Candal, A., Bugallo-Casal, A., Campos, F., Alvarez-Lorenzo, C. 2022. 3D printed carboxymethyl cellulose scaffolds for autologous growth factors delivery in wound healing. Carbohydrate polymers, 278:
- Ding, X., Kakanj, P., Leptin, M., Eming, S. A. 2021. Regulation of the wound healing response during aging. Journal of Investigative Dermatology, 141(4):1063-1070.
- Eivazzadeh-Keihan, R., Khalili, F., Khosropour, N., Aliabadi, H.A.M., Radinekiyan, F., Sukhtezari, S., Mahdavi, M. 2021. Hybrid bionanocomposite containing magnesium hydroxide nanoparticles embedded in a carboxymethyl cellulose hydrogel plus silk fibroin as a scaffold for wound dressing applications. ACS Applied Materials Interfaces, 13(29):33840-33849.
- El-Samad, L.M., Hassan, M.A., Basha, A. A., El-Ashram, S., Radwan, E. H., Aziz, K.K. A., El Wakil, A. 2022. Carboxymethyl cellulose/ sericin-based hydrogels with intrinsic antibacterial, antioxidant, and anti-inflammatory properties promote re-epithelization of diabetic wounds in rats. International Journal of Pharmaceutics, 629:
- Emamzadeh, M., Emamzadeh, M., Pasparakis, G. 2019. Dual controlled delivery of gemcitabine and cisplatin using polymer-modified thermosensitive liposomes for pancreatic cancer. ACS Applied Bio Materials, 2(3):1298-1309.
- Ferrante, C.J., Leibovich, S.J. 2012. Regulation of macrophage polarization and wound healing. Advances in Wound Care, 1(1), 10-16.
- FrykbergRobert, G. 2015. Challenges in the treatment of chronic wounds. Advances in Wound Care, 4(9):560-582.
- Galiano, F., Briceño, K., Marino, T., Molino, A., Christensen, K. V., Figoli, A. 2018. Advances in biopolymer-based membrane preparation and applications. Journal of Membrane Science, 564:562-586.
- Geng, K., Ma, X., Jiang, Z., Huang, W., Gao, C., Pu, Y., Xu, Y. 2021. Innate immunity in diabetic wound healing: focus on the mastermind hidden in chronic inflammatory. Frontiers in Pharmacology, 12:653940.
- Ghobadi, M. Z., Emamzadeh, R., Afsaneh, E. 2022. Exploration of mRNAs and miRNA classifiers for various ATLL cancer subtypes using machine learning. BMC Cancer, 22(1):1-8.
- Gonzalez, A.C.D.O., Costa, T.F., Andrade, Z.d.A., Medrado, A.R.A.P. 2016. Wound healing-A literature review. Anais Brasileiros de Dermatologia, 91:614-620.
- Greaves, N.S., Ashcroft, K.J., Baguneid, M., Bayat, A. 2013. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. Journal of dermatological science, 72(3):206-217.
- He, X., Liu, X., Yang, J., Du, H., Chai, N., Sha, Z., He, C. 2020. Tannic acid-reinforced methacrylated chitosan/methacrylated silk fibroin hydrogels with multifunctionality for accelerating wound healing. Carbohydrate Polymers, 247:
- Hussain, Z., Thu, H.E., Shuid, A.N., Katas, H., Hussain, F. 2018. Recent advances in polymer-based wound dressings for the treatment of diabetic foot ulcer: an overview of state-of-the-art. Current Drug Targets, 19(5): 527-550.
- Jafari, S.S., Emamzadeh, R., Nazari, M., Ganjalikhany, M.R. 2023. Structural studies and cell proliferation activity of human Follistatin-like 1 in reducing and non-reducing conditions. Process Biochemistry, 130:245-255.
- Jafari, S.S., Jafarian, V., Khalifeh, K., Ghanavatian, P., Shirdel, S.A. 2016. The effect of charge alteration and flexibility on the function and structural stability of sweet-tasting brazzein. RSC advances, 6(64):59834-59841.
- Kaku, M., Vinik, A., Simpson, D. M. 2015. Pathways in the diagnosis and management of diabetic polyneuropathy. Current Diabetes Reports, 15(6):1-16.
- Kanikireddy, V., Varaprasad, K., Jayaramudu, T., Karthikeyan, C., Sadiku, R. 2020. Carboxymethyl cellulose-based materials for infection control and wound healing: A review. International Journal of Biological Macromolecules, 164:963-975.
- Khalid, A., Madni, A., Raza, B., ul Islam, M., Hassan, A., Ahmad, F., Wahid, F. 2022. Multiwalled carbon nanotubes functionalized bacterial cellulose as an efficient healing material for diabetic wounds. International Journal of Biological Macromolecules, 203:256-267.
- Kim, J., Lee, K.M., Han, S.H., Ko, E.A., Yoon, D.S., Park, I.K., Lee, J.W. 2021. Development of stabilized dual growth factor-loaded hyaluronate collagen dressing matrix. Journal of tissue engineering, 12:
- Kleine‐Börger, L., Kalies, A., Meyer, R. S., Kerscher, M. 2021. Physicochemical properties of injectable hyaluronic acid: skin quality boosters. Macromolecular Materials and Engineering, 306(8):2100134.
- Lu, X., Qin, L., Guo, M., Geng, J., Dong, S., Wang, K., Liu, M. 2022. A novel alginate from Sargassum seaweed promotes diabetic wound healing by regulating oxidative stress and angiogenesis. Carbohydrate polymers, 289:
- Lv, H., Zhao, M., Li, Y., Li, K., Chen, S., Zhao, W., Han, Y. 2022. Electrospun Chitosan–Polyvinyl Alcohol Nanofiber Dressings Loaded with Bioactive Ursolic Acid Promoting Diabetic Wound Healing. Nanomaterials, 12(17):2933.
- Mahendra, C.K., Tan, L.T.H., Mahendra, C. K., Ser, H.L., Pusparajah, P., Htar, T.T., Ming, L.C. 2021. The Potential of sky fruit as an anti-aging and wound healing cosmeceutical agent. Cosmetics, 8(3):79.
- Maity, B., Alam, S., Samanta, S., Prakash, R. G., Govindaraju, T. 2022. Antioxidant silk fibroin composite hydrogel for rapid healing of diabetic wound. Macromolecular Bioscience, 22(9):2200097.
- Malone, M., Bjarnsholt, T., McBain, A. J., James, G. A., Stoodley, P., Leaper, D., Wolcott, R.D. 2017. The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. Journal of Wound Care, 26(1):20-25.
- Meng, Q., Sun, Y., Cong, H., Hu, H., Xu, F.J. 2021. An overview of chitosan and its application in infectious diseases. Drug Delivery and Translational Research, 11(4):1340-1351.
- Mohan, S., Oluwafemi, O. S., Kalarikkal, N., Thomas, S., Songca, S. P. 2016. Biopolymers–application in nanoscience and nanotechnology. Recent Advances in Biopolymers, 1(1):47-66.
- Monika, P., Chandraprabha, M.N., Rangarajan, A., Waiker, P.V., Chidambara Murthy, K.N. 2022. Challenges in healing wound: role of complementary and alternative medicine. Frontiers in Nutrition, 8:
- Morgan, A., Hartmanis, S., Tsochatzis, E., Newsome, P.N., Ryder, S.D., Elliott, R., Stanley, G. 2021. Disease burden and economic impact of diagnosed non-alcoholic steatohepatitis (NASH) in the United Kingdom (UK) in 2018. The European Journal of Health Economics, 22(4): 505-518.
- Mortazavi, M., Hosseinkhani, S., Torkzadeh-Mahani, M., Lotfi, S., Emamzadeh, R., Ghasemi, Y. 2021. In Silico Analysis of Relative Rareness, Codon Usage, and Enzymesubstrate Docking of Lampyroidea Maculata luciferase. Current Proteomics, 18(3): 424-434.
- Naomi, R., Bahari, H., Ridzuan, P. M., Othman, F. 2021. Natural-based biomaterial for skin wound healing (Gelatin vs. collagen): Expert review. Polymers, 13(14):2319.
- Nazari, M., Emamzadeh, R., Jahanpanah, M., Yazdani, E., Radmanesh, R. 2022. A recombinant affitoxin derived from a HER3 affibody and diphteria-toxin has potent and selective antitumor activity. International Journal of Biological Macromolecules, 219: 1122-1134.
- Nazari, M., Zamani Koukhaloo, S., Mousavi, S., Minai‐Tehrani, A., Emamzadeh, R., Cheraghi, R. 2019. Development of a ZHER3‐Affibody‐Targeted Nano‐Vector for Gene Delivery to HER3‐Overexpressed Breast Cancer Cells. Macromolecular Bioscience, 19(11): 1900159.
- Nori, Z. Z., Bahadori, M., Moghadam, M., Tangestaninejad, S., Mirkhani, V., Mohammadpoor-Baltork, I., Alem, H. 2023. Synthesis and characterization of a new gold-coated magnetic nanoparticle decorated with a thiol-containing dendrimer for targeted drug delivery, hyperthermia treatment and enhancement of MRI contrast agent. Journal of Drug Delivery Science and Technology, 81: 104216.
- Nourian Dehkordi, A., Mirahmadi Babaheydari, F., Chehelgerdi, M., Raeisi Dehkordi, S. 2019. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Research and Therapy, 10(1):1-20.
- Nussbaum, S.R., Carter, M. J., Fife, C.E., DaVanzo, J., Haught, R., Nusgart, M., Cartwright, D. 2018. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value in Health, 21(1):27-32.
- Nuutila, K., Singh, M., Kruse, C., Philip, J., Caterson, E.J., Eriksson, E. 2016. Titanium wound chambers for wound healing research. Wound Repair and Regeneration, 24(6):1097-1102.
- Ogurtsova, K., Guariguata, L., Barengo, N. C., Ruiz, P.L.D., Sacre, J.W., Karuranga, S., Magliano, D. J. 2022. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Research and Clinical Practice, 183:1
- Pasomboon, P., Chumnanpuen, P.E., Kobon, T. 2021. Modified Genome-Scale Metabolic Model of Escherichia coli by Adding Hyaluronic Acid Biosynthesis-Related Enzymes (GLMU2 and HYAD) from Pasteurella multocida. International Journal of Biotechnology and Bioengineering, 15(5):54-58.
- Pettifor, J.L. 2012. Book Review of Encyclopedia of Applied Ethics. Canadian Journal of Counselling and Psychotherapy, 46(4):335-343.
- Powers, J.G., Higham, C., Broussard, K., Phillips, T.J. 2016. Wound healing and treating wounds: Chronic wound care and management. Journal of the American Academy of Dermatology, 74(4):607-625.
- Qian, B., Li, J., Guo, K., Guo, N., Zhong, A., Yang, J., Xiong, L. 2021. Antioxidant biocompatible composite collagen dressing for diabetic wound healing in rat model. Regenerative Biomaterials, 8(2):rbab003.
- Reinke, J., Sorg, H. 2012. Wound repair and regeneration. European Surgical Research, 49(1):35-43.
- Rezaei, F.S., Sharifianjazi, F., Esmaeilkhanian, A., Salehi, E. 2021. Chitosan films and scaffolds for regenerative medicine applications: A review. Carbohydrate Polymers, 273:
- Schubert-Bast, S., Kay, L., Simon, A., Wyatt, G., Holland, R., Rosenow, F., Strzelczyk, A. 2022. Epidemiology, healthcare resource use, and mortality in patients with probable Dravet syndrome: A population-based study on German health insurance data. Epilepsy and Behavior, 126:108442.
- Seddiqi, H., Oliaei, E., Honarkar, H., Jin, J., Geonzon, L.C., Bacabac, R.G., Klein-Nulend, J. 2021. Cellulose and its derivatives: Towards biomedical applications. Cellulose, 28(4):1893-1931.
- Seidi, F., Yazdi, M.K., Jouyandeh, M., Dominic, M., Naeim, H., Nezhad, M.N., Saeb, M.R. 2021. Chitosan-based blends for biomedical applications. International Journal of Biological Macromolecules, 183:1818-1850.
- Sen, C.K. 2019. Human wounds and its burden: an updated compendium of estimates. In (Vol. 8, pp. 39-48): Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New.
- Shah, S.A., Sohail, M., Khan, S.A., Kousar, M. 2021. Improved drug delivery and accelerated diabetic wound healing by chondroitin sulfate grafted alginate-based thermoreversible hydrogels. Materials Science and Engineering: C, 126:112169.
- Shahverdi, S., Hajimiri, M., Esfandiari, M. A., Larijani, B., Atyabi, F., Rajabiani, A., Dinarvand, R. 2014. Fabrication and structure analysis of poly (lactide-co-glycolic acid)/silk fibroin hybrid scaffold for wound dressing applications. International Journal of Pharmaceutics, 473(1-2):345-355.
- Shamsi, M., Shirdel, S.A., Jafarian, V., Jafari, S.S., Khalifeh, K., Golestani, A. 2016. Optimization of conformational stability and catalytic efficiency in chondroitinase ABC Ι by protein engineering methods. Engineering in Life Sciences, 16(8):690-696.
- Sharma, S., Rai, V.K., Narang, R.K., Markandeywar, T.S. 2021. Collagen-based formulations for wound healing: A literature review. Life Sciences, 120096.
- Shaw, J.E., Sicree, R.A., Zimmet, P.Z. 2010. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice, 87(1), 4-14.
- Shen, T., Dai, K., Yu, Y., Wang, J., Liu, C. 2020. Sulfated chitosan rescues dysfunctional macrophages and accelerates wound healing in diabetic mice. Acta Biomaterialia, 117:192-203.
- Su, S., Bedir, T., Kalkandelen, C., Sasmazel, H.T., Basar, A.O., Chen, J., Gunduz, O. 2022. A drug-eluting nanofibrous hyaluronic acid-keratin mat for diabetic wound dressing. Emergent Materials, 5(6):1617-1627.
- Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., Mbanya, J.C. 2022. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183:
- Sun, H., Yang, Y., Wu, Y., Fu, Z., Zhang, Y., Liu, Y., Mai, B. 2022. Zinc alginate hydrogels with embedded RL-QN15 peptide-loaded hollow polydopamine nanoparticles for diabetic wound healing therapy. Materials and Design, 222:111085.
- Tan, C., Yuan, Z., Xu, F., Xie, X. 2022. Electrospun cellulose acetate wound dressings loaded with Pramipexole for diabetic wound healing: an in vitro and in vivo study. Cellulose, 29(6):3407-3422.
- Teixeira, M.A., Paiva, M.C., Amorim, M. T.P., Felgueiras, H.P. 2020. Electrospun nanocomposites containing cellulose and its derivatives modified with specialized biomolecules for an enhanced wound healing. Nanomaterials, 10(3):557.
- Varaprasad, K., Jayaramudu, T., Kanikireddy, V., Toro, C., Sadiku, E. R. 2020. Alginate-based composite materials for wound dressing application: A mini review. Carbohydrate Polymers, 236:
- Varnosfaderani, Z.G., Emamzadeh, R., Nazari, M., Zarean, M. 2019. Detection of a prostate cancer cell line using a bioluminescent affiprobe: An attempt to develop a new molecular probe for ex vivo studies. International Journal of Biological Macromolecules, 138:755-763.
- Verma, G., Ravichandran, S. 2020. Evolution of biotechnology as a million dollar market: The Management and commerce of a biotech start-up. Biotechnology Business-Concept to Delivery, 2020:161-178.
- Wahid, F., Huang, L.H., Zhao, X.Q., Li, W.C., Wang, Y.Y., Jia, S.R., Zhong, C. 2021. Bacterial cellulose and its potential for biomedical applications. Biotechnology Advances, 53:
- Wang, T., Zheng, Y., Shi, Y., Zhao, L. 2019. pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity. Drug Delivery and Translational Research, 9(1):227-239.
- Xu, X., Wang, X., Qin, C., Zhang, W., Mo, X. 2021. Silk fibroin/poly-(L-lactide-co-caprolactone) nanofiber scaffolds loaded with Huangbai Liniment to accelerate diabetic wound healing. Colloids and Surfaces B: Biointerfaces, 199:111557.
- Xu, Z., Liu, G., Zheng, L., Wu, J. 2023. A polyphenol-modified chitosan hybrid hydrogel with enhanced antimicrobial and antioxidant activities for rapid healing of diabetic wounds. Nano Research, 16:905-916.
- Yılmaz, R. 2019. Modern biotechnology breakthroughs to food and agricultural research in developing countries. GM Crops and Food, 10(1):12-16.
- Zarei Ghobadi, M., Emamzadeh, R. 2022. Integration of gene co-expression analysis and multi-class SVM specifies the functional players involved in determining the fate of HTLV-1 infection toward the development of cancer (ATLL) or neurological disorder (HAM/TSP). Plos One, 17(1):
- Zhang, Y., Zheng, Y., Shu, F., Zhou, R., Bao, B., Xiao, S., Xia, Z. 2022. In situ-formed adhesive hyaluronic acid hydrogel with prolonged amnion-derived conditioned medium release for diabetic wound repair. Carbohydrate Polymers, 276:
- Zhu, T., Mao, J., Cheng, Y., Liu, H., Lv, L., Ge, M., Li, H. 2019. Recent progress of polysaccharide‐based hydrogel interfaces for wound healing and tissue engineering. Advanced Materials Interfaces, 6(17):1900761.
|