بررسی نظاممند مدلهای پیشبینی ورشکستگی
پیشرفت های مالی و سرمایه گذاری
دوره 4، شماره 4 ، آذر 1402، صفحه 144-117 اصل مقاله (708.26 K )
نوع مقاله: پژوهشی
شناسه دیجیتال (DOI): 10.30495/afi.2023.1971181.1164
نویسندگان
جابر زحمتکش 1 ؛ اکرم تفتیان* 1 ؛ محمود معینالدین 1 ؛ امین نظارات 2
1 گروه حسابداری، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران.
2 گروه مهندسی کامپیوتر، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران.
چکیده
هدف: هدف پژوهش حاضر بررسی نظاممند مدلهای پیشبینی ورشکستگی در راستای ایجاد مدلی است که بهعنوان راهنمایی برای انتخاب ابزار مناسب که بهترین انطباق را با دادههای موجود و معیارهای کیفیت مدلهای پیشبینی ورشکستگی دارد عمل کند.روششناسی پژوهش: برای انجام این پژوهش، جستجوی سیستماتیک از database (web of Science) با استفاده از کلیدواژههای Bankruptcy، Default، Distress، Failure، Forecasting، Predicting، Prediction و Insolvency بین سالهای ۲۰15 لغایت 2023 صورت پذیرفت. باتوجهبه معیارهای ورود و خروج تعریفشده، حاصل این جستجو 1000 مقاله بود که درنهایت 49 مقاله از میان آنها انتخاب و مورد تجزیهوتحلیل قرار گرفت. سپس یافتههای بهدستآمده از مقالات، در جداول خلاصهسازی وارد گردیده و در گام بعدی، مدلهای بزرگ پیشبینی ورشکستگی بر اساس 9 معیار کلیدی با یکدیگر مقایسه و نتیجهگیری نهایی به عمل آمد.یافتهها: شبکه عصبی مصنوعی و ماشینهای بردار پشتیبان دارای بیشترین دقت میباشند درحالیکه تحلیل شخصیتی چندگانه دارای کمترین دقت است. همچنین شبکه عصبی مصنوعی و تحلیل شخصیتی چندگانه، درخت تصمیمگیری و رگرسیون لجستیک به نمونه آموزشی بزرگی نیاز دارند تا الگویی را منطقاً شناسایی کرده و طبقهبندی بسیار دقیقی ارائه دهند؛ اما استدلال مبتنی بر مورد، مجموعههای راف و ماشینهای بردار پشتیبان میتوانند با اندازه نمونههای کوچک کار کنند.اصالت / ارزشافزوده علمی: نتایج این پژوهش به درک کامل ویژگیهای ابزارهای مورداستفاده برای توسعه مدلهای پیشبینی ورشکستگی و کاستیهای مربوط به آنها کمک میکند.
کلیدواژهها
ابزارهای آماری ؛ ابزارهای هوش مصنوعی ؛ بررسی نظاممند ؛ مدلهای پیشبینی ورشکستگی
مراجع
Abellán, J., & Mantas, C. J. (2014). Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications , 41 (8), 3825–3830.
Ahmadpour Kasgari, A., Divsalar, M., Javid, M. R., & Ebrahimian, S. J. (2013). Prediction of bankruptcy Iranian corporations through artificial neural network and Probit-based analyses. Neural Computing and Applications , 23 , 927–936.
Alaka, H. A., Oyedele, L. O., Owolabi, H. A., Ajayi, S. O., Bilal, M., & Akinade, O. O. (2016). Methodological approach of construction business failure prediction studies: a review. Construction Management and Economics , 34 (11), 808–842.
Alibabaee, G., & Khanmohammadi, M. (2022). The Study of the Predictive Power of Meta-heuristic Algorithms to Provide a Model for Bankruptcy prediction. International Journal of Finance & Managerial Accounting , 7 (26), 33-51.
Almaskati, N., Bird, R., Yeung, D., & Lu, Y. (2021). A horse race of models and estimation methods for predicting bankruptcy. Advances in Accounting , 52 , 100513.
Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance , 23 (4), 589–609.
Appiah, K. O., Chizema, A., & Arthur, J. (2015). Predicting corporate failure: a systematic literature review of methodological issues. International Journal of Law and Management , 57 (5), 461–485.
Arieshanti, I., Purwananto, Y., Ramadhani, A., Nuha, M. U., & Ulinnuha, N. (2013). Comparative Study of Bankruptcy Prediction Models. TELKOMNIKA (Telecommunication Computing Electronics and Control) , 11 (3), 591-596.
Beaver, W. H. (1966). Financial Ratios As Predictors of Failure. Journal of Accounting Research , 4 (3), 71–111.
Bemš, J., Starý, O., Macas, M., Žegklitz, J., & Petr Pošík. (2015). Innovative default prediction approach. Expert Systems with Applications , 42 (17-18), 6277-6285.
Boritz, J. E., & Kennedy, D. B. (1995). Effectiveness of neural network types for prediction of business failure. Expert Systems with Applications , 9 (4), 503–512.
Callejón, A. M., Casado, A. M., Fernández, M. A., & Peláez, J. I. (2013). A System of Insolvency Prediction for industrial companies using a financial alternative model with neural networks. International Journal of Computational Intelligence Systems , 6 (1), 29–37.
Chen, H.-L., Yang, B., Wang, G., Liu, J., Xu, X., Wang, S.-J., & Liu, D.-Y. (2011). A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method. Knowledge-Based Systems , 24 (8), 1348–1359.
Chen, M.-Y. (2011). A hybrid model for business failure prediction -- Utilization of particle swarm optimization and support vector machines. Neural Network World , 21 (2), 129–152.
Chen, N., Ribeiro, B., Vieira, A. S., Duarte, J., & Neves, J. C. (2011). A genetic algorithm-based approach to cost-sensitive bankruptcy prediction. Expert Systems with Applications , 38 (10), 12939–12945.
Cho, S., Hong, H., & Ha, B.-C. (2010). A hybrid approach based on the combination of variable selection using decision trees and case-based reasoning using the Mahalanobis distance: For bankruptcy prediction. Expert Systems with Applications , 37 (4), 3482–3488.
Chuang, C.-L. (2013). Application of hybrid case-based reasoning for enhanced performance in bankruptcy prediction. Information Sciences , 236 , 174–185.
De Andrés, J., Landajo, M., & Lorca, P. (2012). Bankruptcy prediction models based on multinorm analysis: An alternative to accounting ratios. Knowledge-Based Systems , 30 , 67–77.
De Andrés, J., Lorca, P., de Cos Juez, F. J., & Sánchez-Lasheras, F. (2011). Bankruptcy forecasting: A hybrid approach using Fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS). Expert Systems with Applications , 38 (3), 1866–1875.
Divsalar, M., Firouzabadi, A. K., Sadeghi, M., Behrooz, A. H., & Alavi, A. H. (2011). Towards the prediction of business failure via computational intelligence techniques. Expert Systems , 28 (3), 209–226.
Divsalar, M., Roodsaz, H., Vahdatinia, F., Norouzzadeh, G., & Behrooz, A. H. (2012). A Robust Data-Mining Approach to Bankruptcy Prediction. Journal of Forecasting , 31 (6), 504–523.
Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification models: a methodology review. Journal of Biomedical Informatics , 35 (5-6), 352–359.
Du Jardin, P. (2010). Predicting bankruptcy using neural networks and other classification methods: The influence of variable selection techniques on model accuracy. Neurocomputing , 73 (10-12), 2047–2060.
Du Jardin, P. (2015). Bankruptcy prediction using terminal failure processes. European Journal of Operational Research , 242 (1), 286–303.
Du Jardin, P., & Séverin, E. (2011). Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model. Decision Support Systems , 51 (3), 701–711.
Du Jardin, P., & Séverin, E. (2012). Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time. European Journal of Operational Research , 221 (2), 378–396.
Gepp, A., Kumar, K., & Bhattacharya, S. (2010). Business failure prediction using decision trees. Journal of Forecasting , 29 (6), 536–555.
Ghamari Moghaddam, A., Lari Dasht Bayaz, M., & Nakhaei, H. (2022). The relationship among the cash components of profit, the stability of profit and the probability of bankruptcy of companies listed in Tehran Stock Exchange. Advances in Finance and Investment , 3 (8), 61-86. [In Persian]
Gordini, N. (2014). A genetic algorithm approach for SMEs bankruptcy prediction: Empirical evidence from Italy. Expert Systems with Applications , 41 (14), 6433–6445.
Greco, S., Matarazzo, B., & Slowinski, R. (2001). Rough sets theory for multicriteria decision analysis. European Journal of Operational Research , 129 (1), 1–47.
Haghparast, A., Momeni, A., Gord, A., & Mansoori, F. (2021). Imaged financial Ratios and Bankruptcy Prediction using Convolutional Neural Networks. Financial Engineering and Portfolio Management , 12 (46), 558-575. [In Persian]
Heidary, M., Ziari, S., Shayan Nia, S. A., & Rashidi Kemijan, A. (2021). Financial Bankruptcy prediction using artificial neural network and firefly algorithms in companies listed in Tehran Stock Exchange. Financial Engineering and Portfolio Management , 12 (46), 691-716. [In Persian]
Heo, J., & Yang, J. Y. (2014). AdaBoost based bankruptcy forecasting of Korean construction companies. Applied Soft Computing , 24 , 494–499.
Ho, C.-Y., McCarthy, P., Yang, Y., & Ye, X. (2012). Bankruptcy in the pulp and paper industry: market’s reaction and prediction. Empirical Economics , 45 (3), 1205–1232.
Huang, S.-C., Tang, Y.-C., Lee, C.-W., & Chang, M.-J. (2012). Kernel local Fisher discriminant analysis based manifold-regularized SVM model for financial distress predictions. Expert Systems with Applications , 39 (3), 3855–3861.
Jackson, R. H. G., & Wood, A. (2013). The performance of insolvency prediction and credit risk models in the UK: A comparative study. The British Accounting Review , 45 (3), 183–202.
Jeong, C., Min, J. H., & Kim, M. S. (2012). A tuning method for the architecture of neural network models incorporating GAM and GA as applied to bankruptcy prediction. Expert Systems with Applications , 39 (3), 3650–3658.
Karpoff, J. M., Koester, A., Lee, D. S., & Martin, G. S. (2017). Proxies and Databases in Financial Misconduct Research. The Accounting Review , 92 (6), 129–163.
Khademolqorani, S., Zeinal Hamadani, A., & Mokhatab Rafiei, F. (2015). A Hybrid Analysis Approach to Improve Financial Distress Forecasting: Empirical Evidence from Iran. Mathematical Problems in Engineering , 2015 , 1–9.
Kim, M.-J., & Kang, D.-K. (2010). Ensemble with neural networks for bankruptcy prediction. Expert Systems with Applications , 37 (4), 3373–3379.
Kim, S. Y. (2011). Prediction of hotel bankruptcy using support vector machine, artificial neural network, logistic regression, and multivariate discriminant analysis. The Service Industries Journal , 31 (3), 441–468.
Kristóf, T., & Virág, M. (2012). Data reduction and univariate splitting — Do they together provide better corporate bankruptcy prediction? Acta Oeconomica , 62 (2), 205–228.
Lee, S., & Choi, W. S. (2013). A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis. Expert Systems with Applications , 40 (8), 2941–2946.
Li, H., Lee, Y.-C., Zhou, Y.-C., & Sun, J. (2011). The random subspace binary logit (RSBL) model for bankruptcy prediction. Knowledge-Based Systems , 24 (8), 1380–1388.
Liang, D., Tsai, C.-F., & Wu, H.-T. (2015). The effect of feature selection on financial distress prediction. Knowledge-Based Systems , 73 , 289–297.
Lin, F., Liang, D., & Wing Sang Chu. (2010). The role of non-financial features related to corporate governance in business crisis prediction. Journal of Marine Science and Technology , 18 (4), 504-513.
Lohmann, C., Möllenhoff, S., & Ohliger, T. (2022). Nonlinear relationships in bankruptcy prediction and their effect on the profitability of bankruptcy prediction models. Journal of Business Economics , 93 , 1661-1690.
López Iturriaga, F. J., & Sanz, I. P. (2015). Bankruptcy visualization and prediction using neural networks: A study of U.S. commercial banks. Expert Systems with Applications , 42 (6), 2857–2869.
Mućko, P., & Adamczyk, A. (2023). Does the bankrupt cheat? Impact of accounting manipulations on the effectiveness of a bankruptcy prediction. PLOS ONE , 18 (1), 1-13.
Odom, M. D., & Sharda, R. (1990). A neural network model for bankruptcy prediction. 1990 IJCNN International Joint Conference on Neural Networks .
Olson, J. A., Schmidt, P., & Waldman, D. M. (1980). A Monte Carlo study of estimators of stochastic frontier production functions. Journal of Econometrics , 13 (1), 67–82.
Pawełek, B. (2019). Extreme gradient boosting method in the prediction of company bankruptcy. Statistics in Transition. New Series , 20 (2), 155–171.
Pawlak, Z. (1982). Rough sets. International Journal of Computer & Information Sciences , 11 (5), 341–356.
Pourgadimi, K., Bahri Sales, J., Jabbarzadeh Kangarluei, S., & Zavar Rezaee, A. (2022). Presenting the developed model of benish model with emphasis on audit quality fea-tures using neural network, vector machine and random forest. Advances in Finance and Investment , 3 (6), 1-30. [In Persian]
Ravi Kumar, P., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques – A review. European Journal of Operational Research , 180 (1), 1–28.
Saroei, S., Vkili Fard,, H. R., & Taleb Nia, G. (2022). Comparison of the Predictive Accuracy of Artificial Neural Network Systems Based on Multilayer Perceptron Approach and Falmer Binary-Logistics Model in Order to Predict Bankruptcy. Financial Engineering and Portfolio Management , 13 (52), 102-120. [In Persian]
Shie, F. S., Chen, M.-Y., & Liu, Y.-S. (2012). Prediction of corporate financial distress: an application of the America banking industry. Neural Computing and Applications , 21 (7), 1687–1696.
Shin, K.-S., Lee, T. S., & Kim, H. (2005). An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications , 28 (1), 127–135.
Tam, K. Y., & Kiang, M. Y. (1992). Managerial Applications of Neural Networks: The Case of Bank Failure Predictions. Management Science , 38 (7), 926–947.
Tsai, C.-F. (2014). Combining cluster analysis with classifier ensembles to predict financial distress. Information Fusion , 16 , 46–58.
Tsai, C.-F., & Cheng, K.-C. (2012). Simple instance selection for bankruptcy prediction. Knowledge-Based Systems , 27 , 333–342.
Tsai, C.-F., & Hsu, Y.-F. (2013). A Meta-learning Framework for Bankruptcy Prediction. Journal of Forecasting , 32 (2), 167–179.
Tsai, C.-F., Hsu, Y.-F., & Yen, D. C. (2014). A comparative study of classifier ensembles for bankruptcy prediction. Applied Soft Computing , 24 , 977–984.
Tseng, F.-M., & Hu, Y.-C. (2010). Comparing four bankruptcy prediction models: Logit, quadratic interval logit, neural and fuzzy neural networks. Expert Systems with Applications , 37 (3), 1846–1853.
Tserng, H. P., Chen, P.-C., Huang, W.-H., Lei, M. C., & Tran, Q. H. (2014). Prediction of default probability for construction firms using the logit model. Journal of Civil Engineering and Management , 20 (2), 247–255.
Virág, M., & Nyitrai, T. (2014). Is there a trade-off between the predictive power and the interpretability of bankruptcy models? The case of the first Hungarian bankruptcy prediction model. Acta Oeconomica , 64 (4), 419–440.
Vlaović-Begović, S., Tomašević, S., & Ercegovac, D. (2022). Selection of variables in the function of improving the bankruptcy prediction model. Ekonomika , 68 (3), 45–59.
Wang, G., Ma, J., & Yang, S. (2014). An improved boosting based on feature selection for corporate bankruptcy prediction. Expert Systems with Applications , 41 (5), 2353–2361.
Wang, H., & Liu, X. (2021). Undersampling bankruptcy prediction: Taiwan bankruptcy data. PLOS ONE , 16 (7), 1-17.
Wilson, R. L., & Sharda, R. (1994). Bankruptcy prediction using neural networks. Decision Support Systems , 11 (5), 545–557.
Xiong, T., Wang, S., Mayers, A., & Monga, E. (2013). Personal bankruptcy prediction by mining credit card data. Expert Systems with Applications , 40 (2), 665–676.
Yang, Z., You, W., & Ji, G. (2011). Using partial least squares and support vector machines for bankruptcy prediction. Expert Systems with Applications , 38 (7), 8336–8342.
Yeh, C.-C., Chi, D.-J., & Lin, Y.-R. (2014). Going-concern prediction using hybrid random forests and rough set approach. Information Sciences , 254 , 98–110.
Yoon, J. S., & Kwon, Y. S. (2010). A practical approach to bankruptcy prediction for small businesses: Substituting the unavailable financial data for credit card sales information. Expert Systems with Applications , 37 (5), 3624–3629.
Yu, Q., Miche, Y., Séverin, E., & Lendasse, A. (2014). Bankruptcy prediction using Extreme Learning Machine and financial expertise. Neurocomputing , 128 , 296–302.
Zambrano Farias, F., Valls Martínez, M. del C., & Martín-Cervantes, P. A. (2021). Explanatory Factors of Business Failure: Literature Review and Global Trends. Sustainability , 13 (18), 10154-10178.
Zhou, L., Lai, K. K., & Yen, J. (2012). Bankruptcy prediction using SVM models with a new approach to combine features selection and parameter optimisation. International Journal of Systems Science , 45 (3), 241–253.
Zhou, L., Lai, K. K., & Yen, J. (2012). Empirical models based on features ranking techniques for corporate financial distress prediction. Computers & Mathematics with Applications , 64 (8), 2484–2496.
آمار
تعداد مشاهده مقاله: 102
تعداد دریافت فایل اصل مقاله: 196