- S. (Dhaya) Battina, “The Role of Machine Learning in Clinical Research: Transforming the Future of Evidence Generation,” International Journal of Innovations in Engineering Research and Technology, vol. 4, no. 12, pp. 1–10, 2017, Accessed: Aug. 15, 2023. [Online]. Available: https://www.neliti.com/publications/429484/
- Chaudhuri, D. Oudejans, H. J. Thompson, and G. Demiris, “Real World Accuracy and Use of a Wearable Fall Detection Device by Older Adults,” J Am Geriatr Soc, vol. 63, no. 11, p. 2415, Nov. 2015, doi: 10.1111/JGS.13804.
- G. Dietterich, “Editorial Exploratory research in machine learning,” Machine Learning 1990 5:1, vol. 5, no. 1, pp. 5–9, Mar. 1990, doi: 10.1007/BF00115892.
- Chowriappa, S. Dua, and Y. Todorov, “Introduction to machine learning in healthcare informatics,” Intelligent Systems Reference Library, vol. 56, pp. 1–23, 2014, doi: 10.1007/978-3-642-40017-9_1.
- Kalaiselvi and M. Deepika, “Machine Learning for Healthcare Diagnostics,” pp. 91–105, 2020, doi: 10.1007/978-3-030-40850-3_5.
- “(PDF) Analysis of Medical Images Using Machine Learning.” https://www.researchgate.net/publication/370444441_Analysis_of_Medical_Images_Using_Machine_Learning (accessed Aug. 15, 2023).
- Wernick, Y. Yang, J. Brankov, G. Yourganov, and S. Strother, “Machine learning in medical imaging,” IEEE Signal Process Mag, vol. 27, no. 4, pp. 25–38, 2010, doi: 10.1109/MSP.2010.936730.
- W. Libbrecht and W. S. Noble, “Machine learning in genetics and genomics,” Nat Rev Genet, vol. 16, no. 6, p. 321, May 2015, doi: 10.1038/NRG3920.
- Landi et al., “Deep representation learning of electronic health records to unlock patient stratification at scale,” npj Digital Medicine 2020 3:1, vol. 3, no. 1, pp. 1–11, Jul. 2020, doi: 10.1038/s41746-020-0301-z.
- J. Gogtay, R. Ravi, and U. M. Thatte, “Regulatory requirements for clinical trials in India: What academicians need to know,” Indian J Anaesth, vol. 61, no. 3, p. 192, Mar. 2017, doi: 10.4103/IJA.IJA_143_17.
- Qayyum, J. Qadir, M. Bilal, and A. Al-Fuqaha, “Secure and Robust Machine Learning for Healthcare: A Survey,” IEEE Rev Biomed Eng, vol. 14, pp. 156–180, Jan. 2020, doi: 10.1109/RBME.2020.3013489.
- Shah et al., “Artificial intelligence and machine learning in clinical development: a translational perspective,” NPJ Digit Med, vol. 2, no. 1, Dec. 2019, doi: 10.1038/S41746-019-0148-3.
- Gusev et al., “Review Article Noninvasive Glucose Measurement Using Machine Learning and Neural Network Methods and Correlation with Heart Rate Variability,” 2020, doi: 10.1155/2020/9628281.
- “(PDF) BGEMTM: Assessing Elevated Blood Glucose Levels Using Machine Learning and Wearable Photo plethysmography Sensors.” https://www.researchgate.net/publication/366443831_BGEM_Assessing_Elevated_Blood_Glucose_Levels_Using_Machine_Learning_and_Wearable_Photo_plethysmography_Sensors (accessed Aug. 15, 2023).
- “Bio-Resource: How does glucometer or Glucose monitoring device work?” http://technologyinscience.blogspot.com/2015/01/how-does-glucometer-or-glucose.html#.Y_2WdHZBy5d (accessed Feb. 28, 2023).
- Wang et al., “Exploratory study on classification of diabetes mellitus through a combined Random Forest Classifier,” BMC Med Inform Decis Mak, vol. 21, no. 1, Dec. 2021, doi: 10.1186/S12911-021-01471-4.
- Tang, J. H. Lee, R. F. Louie, and G. J. Kost, “Effects of Different Hematocrit Levels on Glucose Measurements With Handheld Meters for Point-of-Care Testing,” Arch Pathol Lab Med, vol. 124, no. 8, pp. 1135–1140, Aug. 2000, doi: 10.5858/2000-124-1135-EODHLO.
- Sittampalam and G. S. Wilson, “Surface-modified electrochemical detector for liquid chromatography,” 2002, doi: 10.1021/AC00260A039.
- N. Szentirmay and C. R. Martin, “Ion-Exchange Selectivity of Nafion Films on Electrode Surfaces,” Anal Chem, vol. 56, no. 11, pp. 1898–1902, 1984, doi: 10.1021/AC00275A031/ASSET/AC00275A031.FP.PNG_V03.
- “Biochemistry Analyzer: Applications, Facts, and Benefits – Blog | Trivitron Healthcare Solutions | Medical Device Company.” https://www.trivitron.com/blog/biochemistry-analyzer-applications-facts-and-benefits/ (accessed Feb. 28, 2023).
- AHeller and B. Feldman, “Electrochemical glucose sensors and their applications in diabetes management,” Chem Rev, vol. 108, no. 7, pp. 2482–2505, Jul. 2008, doi: 10.1021/CR068069Y/ASSET/IMAGES/CR-2006-08069Y_M011.GIF.
- K. Tiwari, H. Nam, and Y. S. Sohn, “Correlation between blood glucose and hematocrit: A new estimation methodology,” Biochip J, vol. 6, no. 3, pp. 206–212, Sep. 2012, doi: 10.1007/S13206-012-6302-5/METRICS.
- Hönes, P. Müller, and N. Surridge, “The Technology Behind Glucose Meters: Test Strips,” https://home.liebertpub.com/dia, vol. 10, no. SUPPL. 1, May 2008, doi: 10.1089/DIA.2008.0005.
- Wang, “Electrochemical glucose biosensors,” Chem Rev, vol. 108, no. 2, pp. 814–825, Feb. 2008, doi: 10.1021/CR068123A.
- Heller and B. Feldman, “Electrochemical glucose sensors and their applications in diabetes management,” Chem Rev, vol. 108, no. 7, pp. 2482–2505, Jul. 2008, doi: 10.1021/CR068069Y/ASSET/IMAGES/LARGE/CR-2006-08069Y_0001.JPEG.
- Amine, J. M. Kauffmann, G. J. Patriarche, and G. G. Guilbault, “Electrochemical Behaviour of a Lipid Modified Enzyme Electrode,” http://dx.doi.org/10.1080/00032718908052362, vol. 22, no. 11–12, pp. 2403–2411, 2006, doi: 10.1080/00032718908052362.
- J. Khanam and S. Y. Foo, “A comparison of machine learning algorithms for diabetes prediction,” ICT Express, vol. 7, no. 4, pp. 432–439, Dec. 2021, doi: 10.1016/J.ICTE.2021.02.004.
- Plis, R. Bunescu, C. Marling, J. Shubrook, and F. Schwartz, “A Machine Learning Approach to Predicting Blood Glucose Levels for Diabetes Management”, Accessed: Aug. 15, 2023. [Online]. Available: www.aaai.org
|