- [1] Kübler, A. (2020). The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome. Neuroethics, 13(2), 163-180.
- [2] Kawala-Janik, A. Efficiency Evaluation of External Environments Control Using Bio-Signals. Ph.D. Thesis, University of Greenwich, London, UK, 2013.
- [3] Ebersole, J.S.; Pedley, T.A. Current Practice of Clinical Electroencephalography; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2003
- [4] Millett, D. Hans Berger: From psychic energy to the EEG. Perspect. Biol. Med. 2001, 44, 522–542. [CrossRef] Priyanka A. Abhang, Bharti W. Gawali, Suresh C. Mehrotra,
- [5] Chapter 2 - Technological Basics of EEG Recording and Operation of Apparatus,Editor(s): Priyanka A. Abhang, Bharti W. Gawali, Suresh C. Mehrotra,Introduction to EEG- and Speech-Based Emotion Recognition,Academic Press,2016
- [6] Aggarwal, Swati, and Nupur Chugh. "Signal processing techniques for motor imagery brain computer interface: A review."Array 1 (2019): 100003.
- [7] Donoghue JP. Connecting cortex to machines: recent advances in brain interfaces. Nat Neurosci 2002;5:1085.
- [8] Serruya Mijail D, et al. Brain-machine interface: instant neural control of a movement signal. Nature 2002;416:141.
- [9] Cichocki, Andrzej, et al. "EEG filtering based on blind source separation (BSS) for early detection of Alzheimer's disease."Clinical Neurophysiology3 (2005): 729-737.
- Al-Fahoum, Amjed S., and Ausilah A. Al-Fraihat. "Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains."International Scholarly Research Notices 2014 (2014).
- Osalusi, Bamidele, Amole Abraham, and David Aborisade. "EEG Classification in Brain Computer Interface (BCI): A Pragmatic Appraisal."American Journal of Biomedical Engineering1 (2018): 1-11.
- Mridha, M. F., et al. "Brain-computer interface: Advancement and challenges."Sensors17 (2021): 5746.
- ] Phan A H and Cichocki A 2010 Tensor decompositions for feature extraction and classification of high dimensional datasets Nonlinear Theory Appl. 1 37–68
- Washizawa Y, Higashi H, Rutkowski T, Tanaka T and Cichocki A 2010 Tensor based simultaneous feature extraction and sample weighting for EEG classification Int. Conf. on Neural Information Processing, ICONIP 2010: Neural Information Processing. Models and Applications (Berlin: Springer) pp 26–33
- Onishi A, Phan A, Matsuoka K and Cichocki A 2012 Tensor classification for P300-based brain computer interface IEEE Int. Conf. on Acoustics, Speech and Signal Processing (IEEE) pp 581–4
- Zhang Y, Zhou G, Jin J, Wang X and Cichocki A 2014, “Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis”. J. Neural Syst. 24 1450013
- Zhang Y, Zhou G, Jin J, Wang X and Cichocki A 2015 Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface J. Neurosci. Methods 255 85–91
- Zhang, Y. U., Zhou, G., Jin, J., Wang, X., & Cichocki, A. (2014). “Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis”. International journal of neural systems, 24(04), 1450013.
- Zhang, Y., Zhou, G., Jin, J., Wang, X., & Cichocki, A. (2015). “Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface”. Journal of neuroscience methods, 255, 85-91.
- Zhang, Y., Zhou, G., Jin, J., Zhang, Y., Wang, X., & Cichocki, A. (2017). “Sparse Bayesian multiway canonical correlation analysis for EEG pattern recognition”. Neurocomputing, 225, 103-110.
- Zhang Y, Zhou G, Zhao Q, Onishi A, Jin J, Wang Xand Cichocki, 2011, “Multiway canonical correlationanalysis for frequency components recognition in SSVEP-based BCIs”, Neural Information Processing(Berlin: Springer)
- Çınar, Salim. "Design of an automatic hybrid system for removal of eye-blink artifacts from EEG recordings."Biomedical Signal Processing and Control 67 (2021): 102543.
- Trigui, Omar, et al. "Removal of eye blink artifacts from EEG signal using morphological modeling and orthogonal projection." Signal, Image and Video Processing1 (2022): 19-27.
- Cao, Jiuwen, et al. "Unsupervised eye blink artifact detection from EEG with Gaussian mixture model." IEEE Journal of Biomedical and Health Informatics8 (2021): 2895-2905.
- Wang, Jianhui, et al. "Eye blink artifact detection with novel optimized multi-dimensional electroencephalogram features." IEEE Transactions on Neural Systems and Rehabilitation Engineering 29 (2021): 1494-1503.
- Egambaram, Ashvaany, et al. "Online detection and removal of eye blink artifacts from electroencephalogram." Biomedical Signal Processing and Control 69 (2021): 102887.
- Borowicz, Adam. "Using a multichannel Wiener filter to remove eye-blink artifacts from EEG data." Biomedical Signal Processing and Control 45 (2018): 246-255.
- Zhou, Weidong, and Jean Gotman. "Automatic removal of eye movement artifacts from the EEG using ICA and the dipole model." Progress in Natural Science9 (2009): 1165-1170.
- Sreeja, S. R., et al. "Removal of eye blink artifacts from EEG signals using sparsity." IEEE journal of biomedical and health informatics5 (2017): 1362-1372.
- He, Ping, G. Wilson, and C. Russell. "Removal of ocular artifacts from electro-encephalogram by adaptive filtering." Medical and biological engineering and computing3 (2004): 407-412.
- Joyce, Carrie A., Irina F. Gorodnitsky, and Marta Kutas. "Automatic removal of eye movement and blink artifacts from EEG data using blind component separation." Psychophysiology2 (2004): 313-325.
- Chintala, Sridhar, and Jaisingh Thangaraj. "Ocular artifact elimination from eeg signals using rvff-rls adaptive algorithm." 2020 National Conference on Communications (NCC). IEEE, 2020.
- Yadav, Anchal, and Mahipal Singh Choudhry. "A new approach for ocular artifact removal from EEG signal using EEMD and SCICA." Cogent Engineering1 (2020): 1835146.
- Gajbhiye, Pranjali, Rajesh Kumar Tripathy, and Ram Bilas Pachori. "Elimination of ocular artifacts from single channel EEG signals using FBSE-EWT based rhythms." IEEE Sensors Journal7 (2019): 3687-3696.
- Islam, Md Kafiul, Parviz Ghorbanzadeh, and Amir Rastegarnia. "Probability mapping based artifact detection and removal from single-channel EEG signals for brain–computer interface applications." Journal of Neuroscience Methods 360 (2021): 109249.
- Lee, Young-Eun, No-Sang Kwak, and Seong-Whan Lee. "A real-time movement artifact removal method for ambulatory brain-computer interfaces." IEEE Transactions on Neural Systems and Rehabilitation Engineering12 (2020): 2660-2670.
- Song, Y., & Sepulveda, F. (2018). “A novel technique for selecting EMG-contaminated EEG channels in self-paced brain–computer Interface task onset”.IEEE Transactions on neural systems and rehabilitation engineering, 26(7), 1353-1362.
- Krauledat, Matthias, et al. "Robustifying EEG data analysis by removing outliers." Chaos and Complexity Letters 2.3 (2007): 259-274. J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.
- Gouy-Pailler, Cédric, et al. "Iterative subspace decomposition for ocular artifact removal from EEG recordings." International Conference on Independent Component Analysis and Signal Separation. Springer, Berlin, Heidelberg, 2009. K. Elissa, “Title of paper if known,”
- Croft, Rodney J., et al. "EOG correction: a comparison of four methods." Psychophysiology 42.1 (2005): 16-24. Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy studies on magneto-optical media and plastic substrate interface,” IEEE Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982].
- Young, The Technical Writer’s Handbook. Mill Valley, CA: University Science, 1989.
- Jiang, Aimin, et al. "Efficient CSP algorithm with spatio-temporal filtering for motor imagery classification." IEEE Transactions on Neural Systems and Rehabilitation Engineering4 (2020): 1006-1016.
- Isa, NE Md, et al. "Motor imagery classification in Brain computer interface (BCI) based on EEG signal by using machine learning technique." Bulletin of Electrical Engineering and Informatics1 (2019): 269-275.
- Ang, Kai Keng, et al. "Filter bank common spatial pattern (FBCSP) in brain-computer interface." 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence). IEEE, 2008.
- Ramoser, Herbert, Johannes Muller-Gerking, and Gert Pfurtscheller. "Optimal spatial filtering of single trial EEG during imagined hand movement." IEEE transactions on rehabilitation engineering4 (2000): 441-446.
- Oh, Seung-Hyeon, Yu-Ri Lee, and Hyoung-Nam Kim. "A novel EEG feature extraction method using Hjorth parameter." International Journal of Electronics and Electrical Engineering2 (2014): 106-110.
- Übeyli, Elif Derya, and İnan Güler. "Features extracted by eigenvector methods for detecting variability of EEG signals." Pattern Recognition Letters5 (2007): 592-603.
- Stancin, Igor, Mario Cifrek, and Alan Jovic. "A review of EEG signal features and their application in driver drowsiness detection systems." Sensors11 (2021): 3786.
- Stam, CJ van, and E. C. W. Van Straaten. "The organization of physiological brain networks." Clinical neurophysiology6 (2012): 1067-1087.
- Übeyli, Elif Derya. "Analysis of EEG signals by implementing eigenvector methods/recurrent neural networks." Digital Signal Processing1 (2009): 134-143.
- Gaur, Pramod, et al. "A sliding window common spatial pattern for enhancing motor imagery classification in EEG-BCI." IEEE Transactions on Instrumentation and Measurement 70 (2021): 1-9.
- Bose, Rohit, et al. "Performance analysis of left and right lower limb movement classification from EEG." 2016 3rd International Conference on Signal Processing and Integrated Networks (SPIN). IEEE, 2016.
- Raschka, Sebastian, David Julian, and John Hearty. Python: deeper insights into machine learning. Packt Publishing Ltd, 2016.
- Isa, NE Md, et al. "Motor imagery classification in Brain computer interface (BCI) based on EEG signal by using machine learning technique." Bulletin of Electrical Engineering and Informatics1 (2019): 269-275.
- Rish, Irina. "An empirical study of the naive Bayes classifier." IJCAI 2001 workshop on empirical methods in artificial intelligence. Vol. 3. No. 22. 2001.
- Leung, K. Ming. "Naive bayesian classifier." Polytechnic University Department of Computer Science/Finance and Risk Engineering 2007 (2007): 123-156.
- Berrar, Daniel. "Cross-Validation." (2019): 542-545.
- Ang, Kai Keng, et al. "Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b." Frontiers in neuroscience 6 (2012): 39.
- Shenoy, H. Vikram, A. Prasad Vinod, and Cuntai Guan. "Shrinkage estimator based regularization for EEG motor imagery classification." 2015 10th International Conference on Information, Communications and Signal Processing (ICICS). IEEE, 2015.
- Lupu, R. G., Ungureanu, F., & Cimpanu, C. (2019, May). “Brain-computer interface: Challenges and research perspectives”. In 2019 22nd International Conference on Control Systems and Computer Science (CSCS)(pp. 387-394). IEEE.
- Fouad, M. M., Amin, K. M., El-Bendary, N., & Hassanien, A. E. (2015). “Brain computer interface: a review”.Brain-computer interfaces, 3-30.
- Urigüen, J. A., & Garcia-Zapirain, B. (2015). “EEG artifact removal—state-of-the-art and guidelines”. Journal of neural engineering, 12(3), 031001.
- Islam, M. K., Rastegarnia, A., & Yang, Z. (2016). “Methods for artifact detection and removal from scalp EEG: A review”. Neurophysiologie Clinique/Clinical Neurophysiology, 46(4-5), 287-305.
- Mumtaz, W., Rasheed, S., & Irfan, A. (2021). “Review of challenges associated with the EEG artifact removal methods”. Biomedical Signal Processing and Control, 68, 102741.
- Radüntz, T., Scouten, J., Hochmuth, O., & Meffert, B. (2015). “EEG artifact elimination by extraction of ICA-component features using image processing algorithms”. Journal of neuroscience methods, 243, 84-93.
- Radüntz, T., Scouten, J., Hochmuth, O., & Meffert, B. (2017). “Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features”. Journal of neural engineering, 14(4), 046004.
- Roy, V., Shukla, P. K., Gupta, A. K., Goel, V., Shukla, P. K., & Shukla, S. (2021). “Taxonomy on EEG artifacts removal methods, issues, and healthcare applications”. Journal of Organizational and End User Computing (JOEUC), 33(1), 19-46.
- Mannan, M. M. N., Kamran, M. A., & Jeong, M. Y. (2018). “Identification and removal of physiological artifacts from electroencephalogram signals: A review”. Ieee Access, 6, 30630-30652.
- Gevins, A. S., Yeager, C. L., Zeitlin, G. M., Ancoli, S., & Dedon, M. F. (1977). “On-line computer rejection of EEG artifact”. Electroencephalography and clinical Neurophysiology, 42(2), 267-274.
- Park, H. J., Jeong, D. U., & Park, K. S. (2002). “Automated detection and elimination of periodic ECG artifacts in EEG using the energy interval histogram method”. IEEE transactions on Biomedical Engineering, 49(12), 1526-1533.
- Nolan, H., Whelan, R., & Reilly, R. B. (2010). “FASTER: fully automated statistical thresholding for EEG artifact rejection”. Journal of neuroscience methods, 192(1), 152-162.
- Tatum, W. O., Dworetzky, B. A., & Schomer, D. L. (2011). “Artifact and recording concepts in EEG”. Journal of clinical neurophysiology, 28(3), 252-263.
- Jung, C. Y., & Saikiran, S. S. (2016). “A review on EEG artifacts and its different removal technique”. Asia-pacific Journal of Convergent Research Interchange, 2(4), 43-60.
- Jiang, X., Bian, G. B., & Tian, Z. (2019). “Removal of artifacts from EEG signals: a review”. Sensors, 19(5), 987.
- Roháľová, M., Sykacek, P., Koskaand, M., & Dorffner, G. (2001). “Detection of the EEG Artifacts by the Means of the (Extended) Kalman Filter”. Sci. Rev, 1(1), 59-62.
- Blum, S., Jacobsen, N. S., Bleichner, M. G., & Debener, S. (2019). “A Riemannian modification of artifact subspace reconstruction for EEG artifact handling”. Frontiers in human neuroscience, 13, 141.
- Shao, S. Y., Shen, K. Q., Ong, C. J., & Wilder-Smith, E. P. (2008). “Automatic EEG artifact removal: a weighted support vector machine approach with error correction”. IEEE Transactions on Biomedical Engineering, 56(2), 336-344.
- Nejedly, P., Cimbalnik, J., Klimes, P., Plesinger, F., Halamek, J., Kremen, V., ... & Jurak, P. (2019). “Intracerebral EEG artifact identification using convolutional neural networks”. Neuroinformatics, 17(2), 225-234.
- Somers, B., Francart, T., & Bertrand, A. (2018). “A generic EEG artifact removal algorithm based on the multi-channel Wiener filter”. Journal of neural engineering, 15(3), 036007.
- Saba-Sadiya, S., Chantland, E., Alhanai, T., Liu, T., & Ghassemi, M. M. (2021). “Unsupervised EEG artifact detection and correction”. Frontiers in digital health, 2, 608920.
- Islam, M. K., Rastegarnia, A., & Yang, Z. (2016). “Methods for artifact detection and removal from scalp EEG: A review”. Neurophysiologie Clinique/Clinical Neurophysiology, 46(4-5), 287-305.
- Abreu, R., Leal, A., & Figueiredo, P. (2018). “EEG-informed fMRI: a review of data analysis methods”. Frontiers in human neuroscience, 12, 29.
- Varone, G., Hussain, Z., Sheikh, Z., Howard, A., Boulila, W., Mahmud, M., ... & Hussain, A. (2021). “Real-time artifacts reduction during TMS-EEG co-registration: a comprehensive review on technologies and procedures”. Sensors, 21(2), 637.
- Jung, T. P., Humphries, C., Lee, T. W., Makeig, S., McKeown, M. J., Iragui, V., & Sejnowski, T. J. (1998, September). “Removing electroencephalographic artifacts: comparison between ICA and PCA”. In Neural Networks for Signal Processing VIII. Proceedings of the 1998 IEEE Signal Processing Society Workshop (Cat. No. 98TH8378) (pp. 63-72). IEEE.
- Anderer, P., Roberts, S., Schlögl, A., Gruber, G., Klösch, G., Herrmann, W., ... & Saletu, B. (1999). “Artifact processing in computerized analysis of sleep EEG–a review”. Neuropsychobiology, 40(3), 150-157.
- Chen, X., Xu, X., Liu, A., Lee, S., Chen, X., Zhang, X., ... & Wang, Z. J. (2019). “Removal of muscle artifacts from the EEG: a review and recommendations”. IEEE Sensors Journal, 19(14), 5353-5368.
- Cao, K., Guo, Y., & Su, S. W. (2015, December). “A review of motion related EEG artifact removal techniques”. In 2015 9th International Conference on Sensing Technology (ICST) (pp. 600-604). IEEE.
- Klekowicz, H., Malinowska, U., Piotrowska, A. J., Wołyńczyk-Gmaj, D., Niemcewicz, S., & Durka, P. J. (2009). “On the robust parametric detection of EEG artifacts in polysomnographic recordings”. Neuroinformatics, 7(2), 147-160.
- Minguillon, J., Lopez-Gordo, M. A., & Pelayo, F. (2017). “Trends in EEG-BCI for daily-life: Requirements for artifact removal”. Biomedical Signal Processing and Control, 31, 407-418.
- Sadiya, S., Alhanai, T., & Ghassemi, M. M. (2021, May). “Artifact detection and correction in eeg data: A review”. In 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER) (pp. 495-498). IEEE.
- Craik, A., He, Y., & Contreras-Vidal, J. L. (2019). “Deep learning for electroencephalogram (EEG) classification tasks: a review”. Journal of neural engineering, 16(3), 031001.
- Haumann, N. T., Parkkonen, L., Kliuchko, M., Vuust, P., & Brattico, E. (2016). “Comparing the performance of popular MEG/EEG artifact correction methods in an evoked-response study”. Computational Intelligence and Neuroscience, 2016.
- Sazgar, M., & Young, M. G. (2019). “EEG artifacts”. Absolute epilepsy and EEG rotation review (pp. 149-162). Springer, Cham.
- Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., Mckeown, M. J., Iragui, V., & Sejnowski, T. J. (2000). “Removing electroencephalographic artifacts by blind source separation”. Psychophysiology, 37(2), 163-178.
- Kaya, I. (2019). “A brief summary of EEG artifact handling”. Brain-Computer Interface.
- Taherisadr, M., Dehzangi, O., & Parsaei, H. (2017). “Single channel EEG artifact identification using two-dimensional multi-resolution analysis”. Sensors, 17(12), 2895.
- Jafarifarmand, A., & Badamchizadeh, M. A. (2019). “EEG artifacts handling in a real practical brain–computer interface controlled vehicle”. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(6), 1200-1208.
- Gorjan, D., Gramann, K., De Pauw, K., & Marusic, U. (2022). “Removal of movement-induced EEG artifacts: current state of the art and guidelines”. Journal of neural engineering.
- Hartmann, M. M., Schindler, K., Gebbink, T. A., Gritsch, G., & Kluge, T. (2014). “PureEEG: Automatic EEG artifact removal for epilepsy monitoring”. Neurophysiologie Clinique/Clinical Neurophysiology, 44(5), 479-490.
- Muthukumaraswamy, S. D. (2013). “High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations”.Frontiers in human neuroscience, 7, 138.
- Kang, G., Jin, S. H., Kim, D. K., & Kang, S. W. (2018). T59. “EEG artifacts removal using machine learning algorithms and independent component analysis”.Clinical Neurophysiology, 129, e24.
|