تعداد نشریات | 418 |
تعداد شمارهها | 10,006 |
تعداد مقالات | 83,641 |
تعداد مشاهده مقاله | 78,608,366 |
تعداد دریافت فایل اصل مقاله | 55,762,915 |
Dynamic reconfiguration of the distribution systems with Load Duration Curve (LDC) model for reducing the losses and improving the voltage profile | ||
Majlesi Journal of Electrical Engineering | ||
مقاله 2، دوره 18، شماره 2، شهریور 2024، صفحه 1-20 اصل مقاله (5.17 M) | ||
نوع مقاله: Reseach Article | ||
شناسه دیجیتال (DOI): 10.57647/j.mjee.2024.1802.28 | ||
چکیده | ||
Distribution systems pose a significant challenge within the power grid, primarily due to their high current, low voltage, and comparatively high ohmic resistance compared to transmission and sub-transmission systems.This results in substantial power losses, necessitating the need for effective mitigation strategies.To address this issue, a wide range of methods and algorithms have been proposed and continuously developed. Over the past half-century, reconfiguring the distribution network has emerged as a cost-effective and straightforward approach to reducing distribution losses. Distribution system reconfiguration has been extensively studied, with each study aiming to achieve distinct objectives. Additionally, numerous studies have explored the dynamics of distribution system reconfiguration, evaluating and comparing various approaches. This study comprehensively assesses both static and dynamic methods of reconfiguring distribution systems and introduces a novel dynamic reconfiguration technique. Unlike traditional methods that rely on real-time or hourly load models, this approach utilizes a load model to address the dynamic reconfiguration problem. Simulations were conducted on the well-established IEEE 33-bus test system, employing MATLAB software in conjunction with a genetic algorithm to minimize losses and optimize voltage profiles. Based on the simulation results, this novel dynamic reconfiguration method demonstrated superior performance compared to previously employed methods. It effectively reduced power losses and enhanced the voltage profile, demonstrating its potential for improving the overall efficiency of distribution systems. | ||
کلیدواژهها | ||
Distribution system؛ Dynamic؛ Genetic Algorithm؛ Loss reduction؛ network reconfigurationvoltage profile. Load Duration Curve | ||
مراجع | ||
[1] N. C. Koutsoukis, D. O. Siagkas, P. S. Georgilakis, and N. D. Hatziargyriou. “Online reconfiguration of active distribution networks for maximum integration of distributed generation.”. IEEE Trans. Autom. Sci. Eng., 14(2):pp. 437–448, 2017. [2] P.Kayal and C.K.Chanda. “A simple and fast approach for allocation and size evaluation of distributed generation.”. Int. J. Energy Environ. Eng., 4 (7), 2013. [3] S. Lal and A. Laturi. “Techno-economic analysis of a hybrid mini-grid system for Fiji islands.”. Int. J. Energy. Environ. Eng., 3(10), 2012. [4] S.M. Islam. “Increasing wind energy penetration level using pumped hydro storage in island microgrid system.”. Int. J. Energy. Environ. Eng., 3(9), 2012. [5] A. Merlin and H. Back. “Search for a minimal-loss operating spanning tree configuration in an urban power distribution system.”. Proc. 5th Power Syst. Comput. Conf., London, U.K., pages pp. 1–18, 1975. [6] G. Chang, J. Zrida, and J. D. Birdwell. “Knowledgebased distribution system analysis and reconfiguration.”. IEEE Trans. Power Syst., 5(3):pp. 744–749, 1990. [7] Y.-Y. Fu and H.-D. Chiang. “Toward optimal multiperiod network recon-configuration for increasing the hosting capacity of distribution networks.”. IEEE Trans. Power Del., 33(5):pp. 2294–2304, 2018. [8] R. A. Jabr, I. Dac, and I. Huseinagi. “Real time optimal reconfiguration of multiphase active distribution networks.”. IEEE Trans. Smart Grid, 9(6):pp. 6829–6839, 2018. [9] Y. Takenobu, N. Yasuda, S. Kawano, S. I. Minato, and Y. Hayashi. “Evaluation of annual energy loss reduction based on reconfiguration scheduling.”. IEEE Trans. Smart Grid, 9(3):pp. 1986–1996, 2018. [10] A. G. Fonseca, O. L. Tortelli, and E. M. Lourenc¸o. “Extended fast decoupled power −ow for reconfiguration networks in distribution systems.”. ET Gener., Transmiss. Distrib., 12(22):6033–6040, 2018. [11] M. A. T. G. Jahani, P. Nazarian, A. Safari, and M. R. Haghifam. “Multi-objective optimization model for optimal reconfiguration of distribution networks with demand response services.”. Sustain. Cities Soc., 47:pp. 1–11, 2019. [12] E. Kianmehr, S. Nikkhah, and A. Rabiee. “Multiobjective stochastic model for joint optimal allocation of DG units and network reconfiguration from DG owner’s and DisCo’s perspectives.”. Renew. Energy, 132:pp. 471–485, 2019. [13] C. Wang, S. Lei, P. Ju, C. Chen, C. Peng, and Y. Hou. “MDP-based distribution network reconfiguration with renewable distributed generation: Approximate dynamic programming approach.”. IEEE Trans. Smart Grid, 11(4):pp. 3620–3631, 2020. [14] M. Mahdavi and R. Romero. “Reconfiguration of radial distribution systems: An efficient mathematical model.”. IEEE Latin Amer. Trans., 19(7):pp. 1172–1181, 2021. [15] M. Mahdavi, H. H. Alhelou, N. D. Hatziargyriou, and A. Al-Hinai. “An efficient mathematical model for distribution system reconfiguration using AMPL.”. IEEE Access, 9:pp. 79961–79993, 2021. [16] N. V. Kova£ki, P. M. Vidovi, and A. T. Sari¢. “Scalable algorithm for the dynamic reconfiguration of the distribution network using the Lagrange relaxation approach”. Int. J. Elect. Power Energy Syst., 94:pp. 188–202, 2018. [17] K. Jasthi and D. Das. “Simultaneous distribution system reconfiguration and DG sizing algorithm without load −ow solution.”. IET Gener., Trans- miss. Distrib, 12(6):pp. 1303–1313, 2018. [18] X. Ji, Q. Liu, Y. Yu, S. Fan, and N. Wu. “Distribution network reconfiguration based on vector shift operation.”. IET Gener., Transmiss. Distrib., 12(13):pp. 3339–3345, 2018. [19] I. A. Quadri, S. Bhowmick, and D. Joshi. “Multi- bjective approach to maximize loadability of distribution networks by simultaneous recon-guration and allocation of distributed energy resources.”. IET Gener., Transmiss. Distrib., 12(21):pp. 5700–5712, 2018. [20] J. Wang, W. Wang, Z. Yuan, H. Wang, and J. Wu. “A chaos disturbed beetle antennae search algorithm for a multi-objective distribution network reconfiguration considering the variation of load and DG.”. IEEE Access, 8:pp. 97392–97407, 2020. [21] H. Wu, P. Dong, and M. Liu. “Distribution network reconfiguration for loss reduction and voltage stability with random fuzzy uncertainties of renewable energy generation and load.”. IEEE Trans. Ind. Informat., 16(9):pp. 5655–5666, 2020. [22] A. Abbasi. “Investigation of simultaneous effect of demand response and load uncertainty on distribution feeder reconfiguration.”. IET Gener., Transmiss. Distrib., 14(8):pp. 1438–1449, 2020. [23] Y. Song, Y. Zheng, T. Liu, S. Lei, and D. J. Hill. “A new formulation of distribution network reconfiguration for reducing the voltage volatility induced by distributed generation.”. IEEE Trans. Power Syst., 35(1):pp. 496–507, 2020. [24] I. B. Cattani, E. Chaparro, and B. Baran. ´ “Distribution system operation and expansion planning using network reconfiguration.”. IEEE Latin Amer. Trans., 18(5):pp. 845–852, 2020. [25] A. Tyagi, A. Verma, and P. R. Bijwe. “Reconguration for loadability limit enhancement of distribution systems.”. IET Gener., Transmiss. Dis- trib., 12(1):pp. 88–93, 2018. [26] V. B. Pamshetti, S. Singh, and S. P. Singh. “Combined impact of network reconfiguration and volt-VAR control devices on energy savings in the presence of distributed generation.”. IEEE Syst. J., 14(1):pp. 995–1006, 2020. [27] G. Zu, J. Xiao, and K. Sun. “Distribution network reconfiguration comprehensively considering N−1 security and network loss.”. IET Gener., Transmiss. Distrib., 12(8):pp. 1721–1728, 2018. [28] Y. Yang, S. Zhang, W. Pei, J. Sun, and Y. Lu. “Network reconfiguration and operation optimisation of distribution system with flexible DC device.’. J. Eng., 2019(16):pp. 2401–2404, 2019. [29] S. Sadeghi, A. Jahangiri, and A. Ghaderi Shamim. “Optimal reconfiguration of a smart distribution network in the presence of shunt capacitors.”. Electrical Engineering, 106:pp. 603–6014, 2023. DOI: https://doi.org/10.1007/s00202-023-01997-y. [30] O. W. Adebiyi, M. O. Okelola, and S. A. Salimon. “Multi-objective Optimal Allocation of Renewable Energy Distributed Generations and Shunt Capacitors in Radial Distribution System using Corona Virus Herd Optimization.”. Majlesi Journal of Electrical Engineering, 17(3):pp. 145–164, 2023. DOI: https://doi.org/10.30486/mjee.2023.1978728.1068. [31] W. K. Al-Azzawi et al. “Optimization of Energy Systems in a Distribution Micro grid: An Application of the Particle Swarm Optimization.”. Majlesi Journal of Electrical Engineering, 17(2):pp. 41–46, 2023. DOI: https://doi.org/10.30486/mjee.2023.1987130.1147. [32] H. Lotfi, A. Nikooei, A. Shojaei, R. Ghazi, and M. B. Naghibi Sistani. “An Enhanced Evolutionary Algorithm for Providing Energy Management Schedule in the Smart Distribution Network.”. (in en), Majlesi Journal of Electrical Engineering, 14(2): pp. 17–23, 2020. [33] A. Sadighmanesh, M. Sabahi, and M. Zavvari. “Pareto Local Search Function for Optimal Placement of DG and Capacitors Banks in Distribution Systems.”. Majlesi Journal of Electrical Engineering, 15(3):pp. 81–92, 2021. DOI: https://doi.org/10.52547/mjee.15.3.81. [34] A. V. Reddy, M. Damodar Reddy, and Y. V. Reddy. “Feeder Reconfiguration of Distribution Systems for Loss Reduction and Emissions Reduction Using MVO Algorithm.”. (in en), Majlesi Journal of Electrical Engineering, 12(2):1–8, 2018. [35] Q. Liu, L. Zhang, X. Ji, and H. Shi. “Dynamic reconfiguration of distribution network considering the uncertainty of distributed generation and loads.”. (in English), Frontiers in Energy Research, Original Research, 11, 2023. DOI: https://doi.org/10.3389/fenrg.2023.1279579. [36] S. M. Razavi, H. R. Momeni, M. R. Haghifam, and S. Bolouki. “Multi-Objective Optimization of Distribution Networks via Daily Reconfiguration.”. IEEE Transactions on Power Delivery, 37(2):pp. 775–785, 2022. DOI: https://doi.org/10.1109/TPWRD.2021.3070796. [37] H. Gao, W. Ma, S. He, L. Wang, and J. Liu. “TimeSegmented Multi-Level Reconfiguration in Distribution Network: A Novel Cloud-Edge Collaboration Framework.”. IEEE Transactions on Smart Grid, 13(4):pp. 3319–3322, 2022. DOI: https://doi.org/10.1109/TSG.2022.3156433. [38] A. Azizivahed, A. Are, S. Ghavidel, M. Shae-Khah, L. Li, J. Zhang, and J. P. S. Catalao. “ ˜ Energy management strategy in dynamic distribution network reconfiguration considering renewable energy resources and storage.”. IEEE Trans. Sustain. Energy, 11(2):662–673, Apr. 2020. [39] X. Ji, Z. Yin, Y. Zhang, B. Xu, and et al. “Realtime autonomous dynamic reconfiguration based on deep learning algorithm for distribution network.”. Electric. Power Syst. Res., 195:107132, June. 2021. [40] C. Wang, Y. Xu, and J. Zhang. “Dynamic Reconfiguration of Distribution Network Based on Symbolization of Time Series of Load.”. 2019 IEEE 3rd International Electrical and Energy Conference (CIEEC), Beijing, China, :1001–1006, 2019. DOI: https://doi.org/10.1109/CIEEC47146.2019.CIEEC2019377. | ||
آمار تعداد مشاهده مقاله: 31 تعداد دریافت فایل اصل مقاله: 52 |