تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,623 |
تعداد مشاهده مقاله | 78,416,566 |
تعداد دریافت فایل اصل مقاله | 55,445,087 |
Optimization of ANFIS-PID Performance in Bidirectional Buck-Boost DC-DC Converter | ||
Majlesi Journal of Electrical Engineering | ||
مقاله 12، دوره 18، شماره 2، شهریور 2024، صفحه 1-10 اصل مقاله (958.64 K) | ||
نوع مقاله: Reseach Article | ||
شناسه دیجیتال (DOI): 10.57647/j.mjee.2024.1802.40 | ||
چکیده | ||
This paper aims to investigate the performance of a bidirectional DC-DC converter utilizing an ANFIS-PID controller in closed-loop mode. This is because operating a bidirectional DC-DC converter in open-loop mode can result in several problems, including poor regulation, limited flexibility, and limited performance, especially in transient response and efficiency. Additionally, there is a risk of overloading the converter or damaging connected devices due to uncontrolled operation. Therefore, the main objective of this study is to address the critical requirement for enhanced response and load efficiency within the context of a three-phase interleaved bidirectional DC-DC converter designed for Hybrid Electric Vehicle (HEV) applications with 1 kW rated power of converter and 10 kHz switching frequency which exhibits 14.29% reduce overshoot in the system. This research aims to utilize the capabilities of an ANFIS-PID controller to optimize the dynamic responsiveness and load efficiency of the converter. The findings of the study reveal that the implementation of an ANFIS-PID controller leads to improved transient response and load efficiency, highlighting its potential to enhance bidirectional DC-DC converters. To design and simulate the behavior of the converter, MATLAB/Simulink software has been employed. | ||
کلیدواژهها | ||
Bidirectional DC-DC converter؛ Three-phase interleaves converter؛ ANFIS controller؛ PID controller؛ Hybrid controller | ||
مراجع | ||
[1] G. Hill, O. Heidrich, F. Creutzig, and P. Blythe. “The role of electric vehicles in near-term mitigation pathways and achieving the UK ’s carbon budget.”. Appl. Energy, 251:pp. 113111, 2018. [2] P. Wang, C. Zhao, Y. Zhang, J. Li, and Y. Gao. “A bidirectional three-level DC-DC converter with a wide voltage conversion range for hybrid energy source electric vehicles.”. J. Power Electron, 17(2): pp. 334–345, 2017. [3] S. Omer A. Dik and R. Boukhanouf. “Electric vehicles: V2G for rapid, safe, and green EV penetration. ”. Energies, 15(803):pp. 2–27, 2022. [4] J. Chen and B. Lin. “Implementation of digital bidirectional buck- boost converter with changeable output voltage for electric vehicles.”. IEEE International Future Energy Electronics Conference (IFEEC), :pp. 1–6, 2021. [5] F. S. M. Alkhafaji, W. Z. W. Hasan, M. M. Isa, and N. Sulaiman. “A novel method for tuning PID controller.”. J. Telecommun. Electron. Comput. Eng, 10 (1):pp. 33–38, 2018. [6] E. Aircrafts, A. Ojeda-rodr ´ ´ıguez, P. Gonzalez-vizuete, ´ and J. Bernal-mendez. “ ´ A survey on bidirectional dc/dc power converter topologies for the future hybrid and all electric aircrafts.”. Energies, 13(18), 2020. [7] M. Bharathidasan, V. Indragandhi, and B. Aljafari. “Hybrid controlled multi-input dc/dc converter for electric vehicle application.”. Int. Trans. Electr. Energy Syst, 2023, 2023. [8] S. Ghosh. “Neuro-fuzzy-based IoT assisted power monitoring system for smart grid.”. IEEE Access, 9: pp. 168587–599, 2021. [9] K. Bendaoud et al. “Implementation of fuzzy logic controller (FLC) for DC-DC boost converter using Matlab/Simulink.”. Journal of Sensors and Sensor Networks. Special Issue: Smart Cities Using a Wireless Sensor Networks, :pp. 1–5, 2017. [10] K. Mumtha, V. Mahalakshmi, and S. Usha Devi. “Proposed fuzzy logic controller for Buck DC-DC converter.”. Int. J. Fuzzy Syst. Adv. Appl, 7:pp. 24–28, 2021. [11] F. Wang, B. Su Y. Wang, and C. Teng. “Three-phase interleaved high step-up bidirectional DC-DC converter.”. IET Power Electron, 13(12):pp. 2638–2650, 2020. [12] M. H. Jali, N. E. S. Mustafa, T. A. Izzuddin, R. Ghazali, and H. I. Jaafar. “ANFIS-PID controller for arm rehabilitation device.”. Int. J. Eng. Technol, 7(5):pp. 1589–1597, 2015. [13] U. A. Shaikh, M. K. AlGhamdi, and H. A. AlZaher. “Novel product ANFIS-PID hybrid controller for buck converters.”. J. Eng, 2018(8):pp. 730–734, 2018. [14] C. Lai, Y. Lin, and D. Lee. “Study and implementation of a two-phase interleaved bidirectional dc/dc converter for vehicle and dc-microgrid systems.”. Energies, 8(9):pp. 9969–9991,, 2015. [15] R. Kumar, P. K. Behera, and M. Pattnaik. “A comparative analysis of two-phase and three-phase interleaved bidirectional dc-dc converter.”. IEEE Int. Students’ Conf. Electr. Electron. Comput. Sci. SCEECS, : pp. 1–5, 2023. [16] S. Dusmez, S. Member, A. Hasanzadeh, and A. Khaligh. “Comparative analysis of bidirectional thre -level DC-DC converter for automotive applications.”. IEEE Trans. Ind. Electron, , 2015.[17] M. H. Almawlawe and I. Dahham. “Controlling switched DC-DC converter using ANFIS in comparison with PID controller.”. IOP Conference Series: Materials Science and Engineering, , 2020. [18] A. F. Algamluoli. “Voltage controller of dc-dc buck boost converter with proposed PID controller.”. Int. J. Adv. Res. Comput. Eng. Technol, 9(1), 2020. [19] R. Mechgoug, N. Tkouti, and F. Okba. “A adaptive neuro-fuzzy inference system (ANFIS) controller for a 9-level inverter for grid-connected PV systems.”. Neuro Quantology, 21(6):pp. 1120–1134, 2023. [20] T. S. Babu. “A comprehensive review of hybrid energy storage systems: converter topologies, control strategies and future prospects.”. IEEE Access, 8, 2020 | ||
آمار تعداد مشاهده مقاله: 13 تعداد دریافت فایل اصل مقاله: 46 |