تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,264 |
تعداد دریافت فایل اصل مقاله | 54,843,896 |
An Optimized Closed-Loop Z-Source Inverter for Wind Energy Generation System Using Opposition-based Sine Cosine Algorithm | ||
Majlesi Journal of Electrical Engineering | ||
مقاله 11، دوره 18، شماره 2، شهریور 2024، صفحه 1-11 اصل مقاله (2.04 M) | ||
نوع مقاله: Reseach Article | ||
شناسه دیجیتال (DOI): 10.57647/j.mjee.2024.1802.31 | ||
چکیده | ||
For transformer-less operation, a wind energy generating system (WEGS) with an 8.5 kW wind turbine and a 6.6 kW Z-source inverter (ZSI) is modelled. A closed-loop control technique is employed at the load side of the WEGS to obtain a constant voltage with a fluctuating load at the output side of the system. The ZSI is used with a proportional-integral (PI) controller for closed-loop control since it is the least complicated controller to operate and tune. As an effect of ZSI’s nonlinear nature, PI controllers cannot be used directly with this system. The primary focus of this study is the optimization of stabilized PI coefficients (Kp, Ki). PI tuning for closed-loop ZSI is taken care of with the use of particle swarm optimization (PSO), the sine-cosine algorithm (SCA), and the opposition-based sine-cosine algorithm (OB-SCA). The OB-SCA provides superior closed-loop ZSI stability when used with WEGS. MATLAB is used for both the design and simulation of the system. The results demonstrate that the proposed controller can precisely regulate the AC output voltage of ZSI with WEGS. | ||
کلیدواژهها | ||
Opposition-based sine-cosine algorithm (OB-SCA)؛ Proportional-integral (PI) controller؛ Wind energy generation system (WEGS)؛ Z-source inverter (ZSI) | ||
مراجع | ||
[1] R. Sen Subhodeep Paul, Tathagata. Dey, Pallav. Saha, and Snehasish Dey. “Review on the development scenario of renewable energy in different country.”. Energy Management and Renewable Resources (IEMRE), :pp. 44–45, 2021. DOI: https://doi.org/10.1109/IEMRE52042.2021.9386748. [2] N. Anthony Richard and P. Navghare Seema. “An Insight to distributed generation of electrical energy from various renewable sources.”. International Conference on Energy Efficient Technologies for Sustainability (ICEETS), :pp. 341–344, 2016. DOI: https://doi.org/10.1109/ICEETS.2016.7583777. [3] H. I. Faten Ayadi, Colak. Ilhami, and IIhan. Garip. “Targets of countries in renewable energy.”. International Conference on Renewable Energy Research and Applications (ICRERA), :pp. 394–398, 2020. DOI: https://doi.org/10.1109/ICRERA49962.2020.9242765. [4] M. M. Bajestan, H. Madadi, , and M. A. Shamsinejad. “Control of a new stand-alone wind turbine-based variable speed permanent magnet synchronous generator using quasi-Z-source inverter.”. Electr. Power Syst. Res., 177:pp. 106010, 2019. DOI: https://doi.org/10.1016/j.epsr.2019.106010. [5] O. Ellabban and H. Abu-Rub. “Z-source Inverter: topology improvements review.”. IEEE Ind. Electron. Mag., 10:pp. 6–24, 2016. DOI: https://doi.org/10.1109/MIE.2015.2475475. [6] A. S. Siddhartha, G. Carl, others, and A. Azeez Najath. “Modeling, design, control, and implementation of a modified Z-source integrated PV/Grid/EV DC charger/inverter.”. IEEE Trans. Ind. Electron., 65:pp. 5213–5220, 2018. DOI: https://doi.org/10.1109/TIE.2017.2784396. [7] Y. P. Siwakoti, F. Z. Peng, F. Blaabjerg, P. C. Loh, G. E. Town, and S. Yang. “Impedance-source networks for electric power conversion part ii: review of control and modulation techniques.”. IEEE Trans. Power Electron., 30:pp. 1887–1906, 2015. DOI: https://doi.org/10.1109/TPEL.2014.2329859. [8] R. M. Malathi R. “Comparison of PV based embedded Z-source inverter fed three phase induction motor with PI controller and PID controller based closed loop systems.”. , 2017. DOI: https://doi.org/10.1109/AEEICB.2017.7972400. [9] G. Shiva, K. Hrishikes, and R. I. Raj. “Closed loop voltage mode control of impedance source inverter (ZSI).”. Int. Conf. Emerg. Trends VLSI, Embed. Syst. Nano Electron. Telecommun. Syst. ICEVENT, , 2013. DOI: https://doi.org/10.1109/ICEVENT.2013.6496528. [10] S. Kumaravel, V. Thomas, S. K. Tripathy, and S. Ashok. “Performance analysis of a Z-Source inverter with controller for autonomous system application.”. IEEE 7th Int. Conf. Power Energy, PECon, :pp. 355–359, 2018. DOI: https://doi.org/10.1109/PECON.2018.8684183[11] A. R. Yılmaz, B. Erol, A. Delibas¸ı, and B. Erkmen. “Design of gain-scheduling PID controllers for Z-source inverter using iterative reductionbased heuristic algorithms.”. Simul. Model. Pract. Theory., 94:pp. 162–176, 2019. DOI: https://doi.org/10.1016/j.simpat.2019.02.005. [12] O. ¨ Ozkara and A. Karaarsalan. “ ¨ Continuous time least square PI control method for quasi-Z source inverter.”. Teh. Vjesn., 30:pp. 1088–1095, 2023. DOI: https://doi.org/10.17559/TV-20221104195058. [13] R. A. Krohling and J. P. Rey. “Design of optimal disturbance rejection PID controllers using genetic algorithms.”. IEEE Trans. Evol. Comput., 5:pp. 78–82, 2001. DOI: https://doi.org/10.1109/4235.910467. [14] J. S. Chiou, S. H. Tsaia, and M. T. Liu. “A PSObased adaptive fuzzy PID-controllers.”. Simul. Model. Pract. Theory., 26:pp. 49–59, 2012. DOI: https://doi.org/10.1016/j.simpat.2012.04.001. [15] P. B. De Moura Oliveira. “Modern heuristics review for PID control systems optimization: A teaching experiment.”. Proc. 5th Int. Conf. Control Autom. ICCA’05, :pp. 828–833, 2005. DOI: https://doi.org/10.1109/icca.2005.1528237. [16] M. N. Ab Wahab, S. Nefti-Meziani, and A. Atyabi. “A comprehensive review of swarm optimization algorithms.”. PLoS One, 10, 2015. DOI: https://doi.org/10.1371/journal.pone.0122827. [17] Y. F. Zou, J. Zhao, and Z. M. Gao. “Guaranteed convergence sine cosine algorithm.”. ACM Int. Conf. Proceeding Ser., :pp. 986–990, 2021. DOI: https://doi.org/10.1145/3501409.3501586. [18] W. Long, T. Wu, X. Liang, and S. Xu. “Solving high-dimensional global optimization problems using an improved sine cosine algorithm.”. Expert Syst. Appl., 123:pp. 108–126, 2019. DOI: https://doi.org/10.1016/j.eswa.2018.11.032. [19] S. Gupta and K. Deep. “Improved sine cosine algorithm with crossover scheme for global optimization.”. KnowledgeBased Syst., 165:pp. 374–406, 2019. DOI: https://doi.org/10.1016/j.knosys.2018.12.008. [20] Y. P. Siwakoti, F. Z. Peng, F. Blaabjerg, P. C. Loh, , and G. E. Town. “Impedance-source networks for electric power conversion part i: A topological review.”. IEEE Trans. Power Electron., 30:pp. 699–716, 2015. DOI: https://doi.org/10.1109/TPEL.2014.2313746. [21] S. Kumari and R. K. Mandal. “Effectivness of space vector PWM in three-phase inverter.”. Int. Conf. Emerg. Front. Electr. Electron. Technol. ICEFEET., :pp. 2–6, 2020. DOI: https://doi.org/10.1109/ICEFEET49149.2020.9187000. [22] M. T. Islam and S. I. Ayon. “Performance analysis of three-phase inverter for minimizing total harmonic distortion using space vector pulse width modulation technique.”. ICCIT 2020 − 23rd Int. Conf. Comput. Inf. Technol. Proc., :pp. 14–17, 2020. DOI: https://doi.org/10.1109/ICCIT51783.2020.9392687. [23] S. K. Baksi and R. K. Behera. “Reduced CMV SVPWM scheme for three-level Z-source NPC inverter for PV grid integration.”. Int. Conf. Power Electron. Energy., :pp. 1–6, 2023. DOI: https://doi.org/10.1109/ICPEE54198.2023.10060515. [24] S. Mirjalili. “SCA: a sine cosine algorithm for solving optimization problems.”. KnowledgeBased Syst., 96:pp. 120–133, 2016. DOI: https://doi.org/10.1016/j.knosys.2015.12.022. [25] M. Wang and G. Lu. “A modified sine cosine algorithm for solving optimization problems.”. IEEE Access, 9:pp. 27434–27450, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3058128. [26] P. C. Chiu, A. Selamat, O. Krejcar, and K. K. Kuok. “Hybrid sine cosine and fitness dependent optimizer for global optimization.”. IEEE Access, 9:pp. 128601–128622, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3111033. [27] S. Oshnoei, A. Oshnoei, A. Mosallanejad, , and F. Haghjoo. “Novel load frequency control scheme for an interconnected two-area power system including wind turbine generation and redox flow battery.”. Int. J. Electr. Power Energy Syst., 130:pp. 107033, 2021. DOI: https://doi.org/10.1016/j.ijepes.2021.107033. [28] S. Padmanaban and others. “A novel modified sinecosine optimized MPPT algorithm for grid integrated PV system under real operating conditions.”. IEEE Access, 7:pp. 10467–10477, 2019. DOI: https://doi.org/10.1109/ACCESS.2018.2890533. [29] M. Abd Elaziz, D. Oliva, and S. Xiong. “An improved opposition-based sine cosine algorithm for global optimization.”. Expert Syst. Appl., 90:pp. 484–500, 2017. DOI: https://doi.org/10.1016/j.eswa.2017.07.043. [30] E. Cuevas, D. Oliva, D. Zaldivar, and G. Pajares. “Opposition-based electromagnetism-like for global optimization.”. Int. J. Innov. Comput. Inf. Control., 8:pp. 8181–8198, 2012. DOI: https://doi.org/10.48550/arXiv.1405.5172. [31] A. Taheri, J. A. Bolaghi, and M. H. Babaei. “LC-Z-source inverter design and control.”. Chinese J. Electron., 29, 2020. DOI: https://doi.org/10.1049/cje.2020.03.014. | ||
آمار تعداد مشاهده مقاله: 15 تعداد دریافت فایل اصل مقاله: 57 |