تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,623 |
تعداد مشاهده مقاله | 78,416,316 |
تعداد دریافت فایل اصل مقاله | 55,444,858 |
Numerical Analysis of Diameter Dependency of Control Coefficient of Carbon Nanotube Field Effect Transistor | ||
Majlesi Journal of Electrical Engineering | ||
مقاله 7، دوره 18، شماره 2، شهریور 2024، صفحه 1-7 اصل مقاله (1009.82 K) | ||
نوع مقاله: Reseach Article | ||
شناسه دیجیتال (DOI): 10.57647/j.mjee.2024.1802.37 | ||
چکیده | ||
This study examines the behavior of carbon nanotube field effect transistors under ballistic conditions by analyzing the effect of gate (αG) and drain (αD) control coefficient modifications on the device’s diameter. The effect of αG and αD on the outcome of carbon nanotube field effect transistors (CNTFETs) has been thoroughly investigated, and the performance of the device has been evaluated using a variety of parameters for different diameters. In this CNTFET design, the lowest sub-threshold swing recorded is 60.7 mV/decade when using a lower CNT diameter which is 1 nm. The smaller value of sub-threshold swing is contributed by the highest value of gate control coefficient i.e. 0.98, which is desirable for a better ratio between the on- and off-currents and faster-switching device. Again, the maximum quantum capacitance obtained was 1.97×10−10 F/cm2, utilizing a smaller CNT diameter of 1 nm. The maximum value of quantum capacitance is supplied by the value of the gate control coefficient, which is 0.83. Also, the highest transconductance measured, with a greater CNT diameter of 5 nm, is 14.50 uS. With a gate control coefficient of 0.98, the quantum capacitance reaches its maximum value. Overall, the sub-threshold swing decreases as the gate control coefficient increases, while it increases as the drain control coefficient increases. Again, as the gate control coefficient increases, the value of quantum capacitance decreases with a smaller diameter, whereas the quantum capacitance of the device does not fluctuate significantly with a larger diameter. When the diameter changes, the drain control coefficient undergoes an analogous transformation. Furthermore, an increase in the gate control coefficient causes the transconductance to increase. However, when the drain control coefficient is increased along with a change in diameter, the transconductance value remains almost unchanged. Thus, the ideal values for both control coefficients can be determined in this manner to ensure optimal performance. | ||
کلیدواژهها | ||
Gate control coefficients؛ Drain control coefficients؛ Ballistic؛ Sub-threshold swing؛ Transconductance؛ Quantum capacitance | ||
مراجع | ||
[1] P. Avouris and J. Chen. “Nanotube electronics and optoelectronics.”. Materials Today, 9(10):pp. 46–54, 2006. DOI: https://doi.org/10.1016/s1369- 7021(06)71653-4. [2] S. J. Wind, J. Appenzeller, and P. Avouris. “Lateral scaling in carbon-nanotube field-effect transistors.”. Phys Rev Lett, 91(5), 2003. DOI: https://doi.org/10.1103/PhysRevLett.91.058301. [3] J. Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ust ¨ unel, S. Braig, et al. “ ¨ Electron-phonon scattering in metallic single-walled carbon nanotubes.”. Nano Lett, 4(3):pp. 517–520, 2004. DOI: https://doi.org/10.1021/nl035258c. [4] P. L. Mceuen M. S. Fuhrer and H. Park. “Singlewalled carbon nanotube electronics.”. IEEE Transactions on Nanotechnology, 1(1):pp. 78–85, 2002. DOI: https://doi.org/10.1109/TNANO.2002.1005429. [5] K. Natori, Y. Kimura, and T. Shimizu. “Characteristics of a carbon nanotube fieldeffect transistor analyzed as a ballistic nanowire field-effect transistor.”. J Appl Phys, 97(3), 2005. DOI: https://doi.org/10.1063/1.1840096. [6] D. Rechem and S. Latreche. “Nanotube diameter effect on the CNTFET performances.”. 5th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications, TUNISIA: IEEE, , 2009. [7] I. Khan, O. Morshed, and S. M. Mominuzzaman. “Diameter optimization for highest degree of ballisticity of carbon nanotube field effect transistors.”. Micro & Nano Lett, 14(6):pp. 590–594, 2019. [8] A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom. “Theory of ballistic nanotransistors.”. IEEE Trans Electron Devices, 50(9):pp. 1853–1864, 2003. DOI: https://doi.org/10.1109/TED.2003.815366. [9] F. Assad, Z. Ren, D. Vasileska, S. Datta, and M. Lundstrom. “On the performance limits for Si MOSFET’s: a theoretical study.”. IEEE Trans Electron Devices, 47(1):pp. 232–240, 2000. DOI: https://doi.org/10.1109/16.817590. [10] K. Natori. “Ballistic metal-oxidesemiconductor field effect transistor.”. J Appl Phys, 76(8):pp. 4879–4890, 1994. DOI: https://doi.org/10.1063/1.357263. [11] T. Sakamoto, H. Kawaura, T. Baba, and T. Iizuka. “Characteristic length of hot-electron transport in silicon metal-oxide-semiconductor field-effect transistors.”. Appl Phys Lett, 76(18):pp. 2618–2620, 2000. DOI: https://doi.org/10.1063/1.126427. [12] Y. Naveh and K. K. Likharev. “Modeling of 10- nm-scale ballistic MOSFET’s.”. IEEE Electron Device Letters, 21(5):pp. 242–244, 2000. DOI: https://doi.org/10.1109/55.841309. [13] Z. Ren, R. Venugopal, S. Datta, M. Lundstrom, D. Jovanovic, and J. Fossum. “The ballistic nanotransistor: a simulation study.”. IEEE International Electron Devices Meeting. Technical Digest. IEDM, pages pp. 715–718, 2000. DOI: https://doi.org/10.1109/IEDM.2000.904418. [14] D. Akinwande, J. Liang, S. Chong, Y. Nishi, and H. S. P. Wong. “Analytical ballistic theory of carbon nanotube transistors: experimental validation, device physics, parameter extraction, and performance projection.”. J Appl Phys, 104(12):pp. 124514– 7, 2008. DOI: https://doi.org/10.1063/1.3050345. [15] T. J. Kazmierski, D. Zhou, and B. M. Al-Hashimi. “Efficient circuit-level modelling of ballistic CNT using piecewise non linear approximation of mobile charge density.”. IEEE Design, Automation and Test in Europe, Germany, page pp. 146–151, 2008. URL 10.1109/DATE.2008.4484677. [16] T. J. Kazmierski, D. Zhou, B. M. Al-Hashimi, and P. Ashburn. “Numerically efficient modeling of CNT transistors with ballistic and nonballistic effects for circuit simulation.”. IEEE Trans Nanotechnology, 9(1):pp. 99–107, 2010. DOI: https://doi.org/10.1109/TNANO.2009.2017019. [17] J. Guo, M. Lundstrom, and S. Datta. “Performance projections for ballistic carbon nanotube field-effect transistors.”. Appl Phys Lett, 80(17):pp. 3192–3194, 2002. DOI: https://doi.org/10.1063/1.1474604. [18] M. F. Nayan, S. Tahsin, and N.-R. Chowdhury. “Performance analysis of nanoscale carbon nanotube field effect transistor considering the impacts of temperature and gate dielectrics.”. 5th International Conference on Advances in Electrical Engineering (ICAEE), Bangladesh: IEEE, :pp. 60–65, 2019. DOI: https://doi.org/10.1109/ICAEE48663.2019.8975565.[19] K. Aicha, R. Djamil, A. Chrifa, and Z. Mourad. “On the DIBL reduction effect of short channel carbon nanotube field effect transistors.”. International Journal of Electrical and Computer Engineering, 6(4):pp. 1514–1521, 2016. DOI: https://doi.org/10.11591/ijece.v6i4.8434. [20] C. Zhao, D. Zhong, C. Qiu, J. Han, Z. Zhang, and L. M. Peng. “Improving subthreshold swing to thermionic emission limit in carbon nanotube network film-based field-effect.”. Appl Phys Lett, 112(5):pp. 053102–5, 2018. DOI: https://doi.org/10.1063/1.5017195. [21] S. Luryi. “Quantum capacitance devices.”. Appl Phys Lett, 52(6):pp. 501–503, 1988. DOI: https://doi.org/10.1063/1.99649. [22] A. Deyasi and A. Sarkar. “Analytical computation of electrical parameters in GAAQWT and CNTFET with identical configuration using NEGF method.”. International Journal of Electronics, 105(12):pp. 2144–2159, 2018. DOI: https://doi.org/10.1080/00207217.2018.1494339. [23] D. Rechem and S. Latreche. “Nanotube diameter effect on the CNTFET performances.”. 5th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications, TUNISIA : IEEE, 2009. [24] M. F. Abdul Hadi, H. Hussin, M. Muhamad, and N. E. Alias. “Analysis on the performance of CNTFET devices based on the impact of CNT diameter variation.”. International Conference on Electrical and Computing Technologies and Applications, ICECTA, Institute of Electrical and Electronics Engineers Inc., page pp. 148–151, 2022. DOI: https://doi.org/10.1109/ICECTA57148.2022.9990297. [25] A. K. Singh. “An analytical analysis of quantum capacitance in nano-scale single-wall carbon nano tube field effect transistor (CNTFET).”. International Journal of Nanoelectronics and Materials, 11 (3):pp. 249–262, 2018. [26] A. M. Hashim, H. H. Ping, and C. Y. Pin. “Characterization of MOSFET-like carbon nanotube field effect transistor.”. AIP Conference Proceedings, pages pp. 11–18, 2010. DOI: https://doi.org/10.1063/1.3377796. | ||
آمار تعداد مشاهده مقاله: 11 تعداد دریافت فایل اصل مقاله: 52 |