تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,249 |
تعداد دریافت فایل اصل مقاله | 54,843,894 |
GreyWolf Optimized PID controller to control the frequency in a five-area power system in the presence of uncertainties | ||
Majlesi Journal of Electrical Engineering | ||
مقاله 2، دوره 18، شماره 3، آذر 2024، صفحه 1-16 اصل مقاله (8.36 M) | ||
نوع مقاله: Reseach Article | ||
شناسه دیجیتال (DOI): 10.57647/j.mjee.2024.180340 | ||
چکیده | ||
Providing reliable and sufficient power to the client is essential. Power quality is determined by the consistency of frequency and tie-line power between control regions. Thus, the importance of Load Frequency Control in an electrical network cannot be overstated. In this work, a PID controller using the Grey Wolf Optimization algorithm is employed to help with frequency management in a multi-area power network. A reheated turbine power system with five area is controlled by the PID controller. The experimental data showed a comparison between GWO-PID, Genetic Algorithm-based PID, Particle Swarm Optimization-based PID, and Firefly Algorithm-based PID. With a 1% step load variation, the findings confirmed the efficiency of using the integral time absolute error (ITAE) performance index. GA, PSO, and FA can’t keep up with the GWO-based PID controller when it comes to optimising an integrated power system. Simulation results reveal that GWO has the shortest settling time for frequency variations, as well as the lowest undershoot, overshoot, and ITAE values. To evaluate the robustness of GWO-PID, sensitivity analysis is done by modifying the system parameters like turbine and governor time constant in the range of ±10% from their nominal values. | ||
کلیدواژهها | ||
Frequency control؛ Frequency fluctuations؛ Five-area power system؛ PID controller؛ Grey Wolf Optimization | ||
مراجع | ||
[1] A.J. Wood and B.F. Wollenberg. “Power Generation, Operation, and Control.”. J. Wiley & Sons, 1996. [2] O.I. Elgerd and C.E. Fosha. “Optimum MegawattFrequency Control of Multiarea Electric Energy Systems.”. IEEE Transactions on Power Apparatus and Systems, PAS-89(4):556–563, 1970. DOI: https://doi.org/10.1109/TPAS.1970.292602. [3] N. Ram Babu, S.K. Bhagat, L.C. Saikia, T. Chiranjeevi, R. Devarapalli, and F.P. Garc´ıa Marquez. ´ “A Comprehensive Review of Recent Strategies on Automatic Generation Control/Load Frequency Control in Power Systems.”. Arch Computat Methods Eng, 30(1):543–572, 2023. DOI: https://doi.org/10.1007/s11831-022-09810-y. [4] S.K. Bhagat, N.R. Babu, L.C. Saikia, T. Chiranjeevi, R. Devarapalli, and F.P. Garc´ıa Marquez. “ ´ A Review on Various Secondary Controllers and Optimization Techniques in Automatic Generation Control.”. Arch Computat Methods Eng, 30:3081–3111, 2023. DOI: https://doi.org/10.1007/s11831-023-09895-z. [5] C. Ismayil, R. Sreerama Kumar, and T.K. Sindhu. “Automatic generation control of single area thermal power system with fractional order PID (PIλD µ ) controllers.”. IFAC Proceedings Volumes, 47(1):552–557, 2014. DOI: https://doi.org/10.3182/20140313-3-IN-3024.00025. 3rd International Conference on Advances in Control and Optimization of Dynamical Systems (2014). [6] N. Saini and J. Ohri. “Load Frequency Control of Multi-area Thermal Power System Using Grey Wolf Optimization.”. In S. Suhag, C. Mahanta, and S. Mishra, editors, Control and Measurement Applications for Smart Grid, page 347–357. Springer Nature Singapore, Singapore, 2022. DOI: https://doi.org/10.1007/978-981-16-7664-2 28. [7] Y. Arya. “Automatic generation control of two-area electrical power systems via optimal fuzzy classical controller.”. JFranklin Inst., 355(5):2662–2688, 2018. DOI: https://doi.org/10.1016/j.jfranklin.2018.02.004. [8] R.K. Sahu, T.S. Gorripotu, and S. Panda. “Automatic generation control of multi-area power systems with diverse energy sources using Teaching Learning Based Optimization algorithm.”. Eng. Sci. Technol. an Int. J., 19(1):113–134, 2016. DOI: https://doi.org/10.1016/j.jestch.2015.07.011. [9] K. Jagatheesan, B. Anand, S. Samanta, N. Dey, A.S. Ashour, and V.E. Balas. “Design of a proportional-integral-derivative controller for an automatic generation control of multi-area power thermal systems using firefly algorithm.”. IEEE/- CAA J. Autom. Sin., 6(2):503–515, 2019. DOI: https://doi.org/10.1109/JAS.2017.7510436. [10] A. Bagheri, A. Jabbari, and S. Mobayen. “An intelligent ABC-based terminal sliding mode controller for load-frequency control of islanded microgrids.”. Sustain. Cities Soc., 64:102544, 2021. DOI: https://doi.org/10.1016/j.scs.2020.102544. [11] J. Guo. “Application of full order sliding mode control based on different areas power system with load frequency control.”. ISA Trans., 92:23–34, 2019. DOI: https://doi.org/10.1016/j.isatra.2019.01.036. [12] S. Prasad, S. Purwar, and N. Kishor. “Load frequency regulation using observer based nonlinear sliding mode control.”. Int. J. Electr. Power Energy Syst., 104:178–193, 2019. DOI: https://doi.org/10.1016/j.ijepes.2018.06.035. [13] V.A. Nishchitha and M. Pattnaik. “Load Frequency Control of a Four-Area Interconnected ThermalHydro-Nuclear-Wind Power System with NonLinearity using Fuzzy Logic PID Controller.”. International Journal of Engineering Research & Technology (IJERT), 10(04):543–547, 2021. DOI: https://doi.org/10.17577/IJERTV10IS040319. [14] P. Dash, L.C. Saikia, and N. Sinha. “Automatic generation control of multi area thermal system using Bat algorithm optimized PDPID cascade controller.”. Int. J. Electr. Power Energy Syst., 68:364–372, 2015. DOI: https://doi.org/10.1016/j.ijepes.2014.12.063. [15] H. Shabani, B. Vahidi, and M. Ebrahimpour. “A robust PID controller based on imperialist competitive algorithm for load-frequency control of power systems.”. ISA Trans., 52(1):88–95, 2013. DOI: https://doi.org/10.1016/j.isatra.2012.09.008. [16] G. Magdy, G. Shabib, A.A. Elbaset, T. Kerdphol, Y. Qudaih, H. Bevrani, and Y. Mitani. “Tustin’s technique based digital decentralized load frequency control in a realistic multi power system considering wind farms and communications delays.”. Ain Shams Eng. J., 10(2):327–341, 2019. DOI: https://doi.org/10.1016/j.asej.2019.01.004. [17] R.K. Khadanga, A. Kumar, and S. Panda. “A novel modified whale optimization algorithm for load frequency controller design of a twoarea power system composing of PV grid and thermal generator.”. Neural Computing and Applications, 32(12):8205–8216, 2020. DOI: https://doi.org/10.1007/s00521-019-04321-7. [18] A. Fathy and A.G. Alharbi. “Recent Approach Based Movable Damped Wave Algorithm for Designing Fractional-Order PID Load Frequency Control Installed in Multi-Interconnected Plants with Renewable Energy.”. IEEE Access, 9:71072–71089, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3078825. [19] A.M. Ersdal, L. Imsland, and K. Uhlen. “Model Predictive Load-Frequency Control.”. IEEE Trans. Power Syst., 31(1):777–785, 2016. DOI: https://doi.org/10.1109/TPWRS.2015.2412614. [20] M. Elsisi, M.A.S. Aboelela, M. Soliman, and W. Mansour. “Model Predictive Control of TwoArea Load Frequency Control Based Imperialist Competitive Algorithm.”. TELKOMNIKA Indones. J. Electr. Eng., 16(1):75–82, 2015. DOI: https://doi.org/10.11591/telkomnika.v15i3.8856. [21] J. Yang, X. Sun, K. Liao, J. Yang, Z. He, and L. Cai. “Model predictive control-based load frequency control for power systems with wind-turbine generators.”. IET Renew. Power Gener., 13(15):2871–2879, 2019. DOI: https://doi.org/10.1049/iet-rpg.2018.6179. [22] N.R. Babu and L.C. Saikia. “Automatic generation control of a solar thermal and dish-stirling solar thermal system integrated multi-area system incorporating accurate HVDC link model using crow search algorithm optimised FOPI Minus FODF controller.”. IET Renew. Power Gener., 13(12): 2221–2231, 2019. DOI: https://doi.org/10.1049/ietrpg.2018.6089. [23] A. Dokht Shakibjoo, M. Moradzadeh, S.Z. Moussavi, A. Mohammadzadeh, and L. Vandevelde. “Load frequency control for multiarea power systems: A new type-2 fuzzy approach based on Levenberg–Marquardt algorithm.”. ISA Trans., 121:40–52, 2022. DOI: https://doi.org/10.1016/j.isatra.2021.03.044. [24] A. Demiroren and H.L. Zeynelgil. “GA application to optimization of AGC in three-area power system after deregulation.”. Int. J. Electr. Power Energy Syst., 29(3):230–240, 2007. DOI: https://doi.org/10.1016/j.ijepes.2006.07.005. [25] S.K. Sinha, R.N. Patel, and R. Prasad. “Application of GA and PSO Tuned Fuzzy Controller for AGC of Three Area Thermal- ThermalHydro Power System.”. Int. J. Comput. Theory Eng., 2(2):1793–8201, 2010. DOI: https://doi.org/10.7763/IJCTE.2010.V2.146.[26] S.S. Dhillon, J.S. Lather, and S. Marwaha. “Multi Area Load Frequency Control Using Particle Swarm Optimization and Fuzzy Rules.”. in Procedia Computer Science, Elsevier, 57:460–472, 2015. DOI: https://doi.org/10.1016/j.procs.2015.07.363. [27] N.K. Bahgaat, M.I. El-Sayed, M.A.M. Hassan, and F.A. Bendary. “Load Frequency Control in Power System via Improving PID Controller Based on Particle Swarm Optimization and ANFIS Techniques.”. Int. J. Syst. Dyn. Appl., 3(3):1–24, 2014. DOI: https://doi.org/10.4018/ijsda.2014070101. [28] N. Saini and J. Ohri. “Optimal Load Frequency Control of a Multi-Area Power System with Dead Band Effect and Generation Rate Constraints.”. Majlesi J. Electr. Eng., 17(1), 2023. DOI: https://doi.org/10.30486/mjee.2023.1970197.0. [29] N.R. Babu and L.C. Saikia. “Optimal location of accurate HVDC and energy storage devices in a deregulated AGC integrated with PWTS considering HPA-ISE as performance index.”. Eng. Sci. Technol. an Int. J., 33:101072, 2022. DOI: https://doi.org/10.1016/j.jestch.2021.10.004. [30] M. Raju, L.C. Saikia, and N. Sinha. “Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller.”. Int. J. Electr. Power Energy Syst., 80:52–63, 2016. DOI: https://doi.org/10.1016/j.ijepes.2016.01.037. [31] E. C¸ elik, N. Ozt ¨ urk, and E.H. Houssein. “ ¨ Influence of energy storage device on load frequency control of an interconnected dual-area thermal and solar photovoltaic power system.”. Neural Comput. Appl., 34:20083–20099, 2022. DOI: https://doi.org/10.1007/s00521-022-07558-x. [32] K. Naidu, H. Mokhlis, and A.H.A. Bakar. “Multiobjective optimization using weighted sum Artificial Bee Colony algorithm for Load Frequency Control.”. Int. J. Electr. Power Energy Syst., 55:657–667, 2014. DOI: https://doi.org/10.1016/j.ijepes.2013.10.022. [33] N. Saini and J. Ohri. “Load frequency control in three-area single unit power system considering non-linearities effect.”. Cybern. Phys., 12(1):60–69, 2023. DOI: https://doi.org/10.35470/2226-4116-2023- 12-1-60-69. 2345-377X[https://doi.o | ||
آمار تعداد مشاهده مقاله: 58 تعداد دریافت فایل اصل مقاله: 106 |