تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,283 |
تعداد دریافت فایل اصل مقاله | 54,843,916 |
Artificial neural network sensorless direct torque control of two parallel-connected five-phase induction machines | ||
Majlesi Journal of Electrical Engineering | ||
دوره 18، شماره 3، آذر 2024، صفحه 1-14 اصل مقاله (8.12 M) | ||
نوع مقاله: Reseach Article | ||
شناسه دیجیتال (DOI): 10.57647/j.mjee.2024.180348 | ||
چکیده | ||
Conventional direct torque control (DTC) improves the dynamic performance of the five-phase induction machine (FPIM). Nevertheless, it suffers from significant drawbacks of high stator flux and electromagnetic torque ripples. Moreover, the DTC technique relies on an open-loop estimator for accurate stator flux module and position knowledge. However, this method is subjected to substandard performance, mainly during the low-speed operation range. Therefore, a sliding mode sensorless stator flux and rotor speed DTC based on an artificial neural network (DTC-ANN) for two parallel-connected FPIMs is discussed to tackle the problems above. This approach optimizes the DTC performance by replacing the two hysteresis controllers (HC) and the look-up table. As for the poor estimation drawback, the sliding mode observer (SMO) offers a robust estimation and reconstruction of the FPIM variables and eliminates the need for additional sensors, increasing the system’s reliability. The present results verify and compare the performance of the control scheme. | ||
کلیدواژهها | ||
Five-phase induction motor (FPIM)؛ Direct torque control (DTC)؛ Artificial neural network (ANN)؛ Parallelconnected two-motor drive؛ Sensorless control؛ Sliding mode observer (SMO) | ||
مراجع | ||
[1] M. Bermudez et al. “An experimental assessment of open-phase fault-tolerant virtual-vectorbased direct torque control in five-phase induction motor drives.”. IEEE Transactions on Power Electronics, 33(3):pp. 2774–2784, 2018. DOI: https://doi.org/10.1109/tpel.2017.2711531. [2] S. Guedida et al. “Direct torque control scheme for less harmonic currents and torque ripples for dual star induction motor.”. Revue Roumaine des Sciences Techniques, Serie ´ Electrotechnique ´ et Energ ´ etique ´ , 68(4):pp. 331–338, 2023. DOI: https://doi.org/10.59277/RRST-EE.2023.4.2. [3] E. Levi. “Multiphase electric machines for variablespeed applications.”. IEEE Transactions on Industrial Electronics, 55(5):pp. 1893–1909, 2008. DOI: https://doi.org/10.1109/tie.2008.918488. [4] S. Payami, R. K. Behera, and A. Iqbal. “DTC of three-level NPC inverter fed five-phase induction motor drive with novel neutral point voltage balancing scheme.”. IEEE Transactions on Power Electronics, 33(2):pp. 1487–1500, 2018. DOI: https://doi.org/10.1109/tpel.2017.2675621. [5] Y. N. Tatte and M. V. Aware. “Torque ripple and harmonic current reduction in a three-level inverter-fed direct-torque-controlled five-phase induction motor.”. IEEE Transactions on Industrial Electronics, 64(7):pp. 5265–5275, 2017. DOI: https://doi.org/10.1109/tie.2017.2677346. [6] S. Mahfoud et al. “Enhancement of the direct torque control by using artificial neuron network for a doubly fed induction motor.”. Intelligent Systems with Applications, 13, 2022. DOI: https://doi.org/10.1016/j.iswa.2022.200060. [7] S. Gdaim, A. Mtibaa, and M. F. Mimouni. “Artificial Neural Network-based DTC of an induction machine with experimental implementation on FPGA.”. Engineering Applications of Artificial Intelligence, 121:pp. 105972, 2023. DOI: https://doi.org/10.1016/j.engappai.2023.105972. [8] A. Ghamri et al. “Comparative study of ANN DTC and conventional DTC controlled PMSM Motor.”. Mathematics and Computers in Simulation, 167:pp. 219–230, 2020. DOI: https://doi.org/10.1016/j.matcom.2019.09.006. [9] R. Araria, K. Negadi, and F. Marignetti. “Design and analysis of the speed and torque control of Im with DTC based Ann Strategy for Electric Vehicle Application. ”. TECNICA ITALIANA-Italian Journal of Engineering Science, 63(2-4):pp. 181–188, 2019. DOI: https://doi.org/10.18280/ti-ijes.632-410. [10] H. Benbouhenni. “Seven-level direct torque control of induction motor based on artificial neural networks with regulation speed using fuzzy PI controller.”. Iranian Journal of Electrical and Electronic Engineering, 14(1):pp. 85–94, 2018. DOI: https://doi.org/10.22068/IJEEE.14.1.85. [11] R. Kumar et al. “Artificial neural network based direct torque control of induction motor drives.”. IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES), :361–367, 2007. DOI: https://doi.org/10.1049/ic:20070638. [12] A. Zemmit, S. Messalti, and A. Harrag. “Innovative improved Direct Torque Control of Doubly Fed Induction Machine (DFIM) using Artificial Neural Network (ANN-DTC).”. International Journal of Applied Engineering Research, 11(16):pp. 9099–9105, 2016. [13] Y. N. Tatte et al. “Performance improvement of three-level five-phase inverter-fed DTC-controlled five-phase induction motor during low-speed operation.”. IEEE Transactions on Industry Applications, 54(3):pp. 2349–2357, 2018. DOI: https://doi.org/10.1109/tia.2018.2798593. [14] R. Inan. “A novel fpga-based BI input-reduced order extended Kalman filter for speed-sensorless direct torque control of induction motor with constant switching frequency controller.”. IET Computers & amp; Digital Techniques, 15(3):pp. 185–201, 2021. DOI: https://doi.org/10.1049/cdt2.12011. [15] T. Kamel et al. “Extended Kalman filter based sliding mode control of parallel-connected two fivephase PMSM Drive System.”. Electronics, 7(2):pp. 14, 2018. URL 10.3390/electronics7020014. [16] E. Zerdali and M. Barut. “Extended Kalman filter based speed-sensorless load torque and inertia estimations with observability analysis for Induction Motors.”. Power Electronics and Drives, 3(1):pp. 115–127, 2018. DOI: https://doi.org/10.2478/pead2018-0002. [17] S. Guedida et al. “Novel speed sensorless DTC design for a five-phase induction motor with an intelligent fractional order controller based-mras estimator.”. Power Electronics and Drives, 9(1):pp. 63–85, 2024. DOI: https://doi.org/10.2478/pead-2024-0005. [18] S. Jnayah and A. Khedher. “Sensorless direct torque control of induction motor using Sliding mode flux observer.”. 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), page pp. 536–541, 2019. DOI: https://doi.org/10.1109/sta.2019.8717270. [19] Y. Zhang et al. “A comparative study of Luenberger Observer, sliding mode observer and extended Kalman filter for sensorless vector control of induction motor drives.”. IEEE Energy Conversion Congress and Exposition, page pp. 2466–2473, 2009. DOI: https://doi.org/10.1109/ecce.2009.5316508.[20] A. Ammar, A. Bourek, and A. Benakcha. “Sensorless SVM-direct torque control for Induction Motor Drive using sliding mode observers.”. Journal of Control, Automation and Electrical Systems, 28(2):pp. 189–202, 2016. DOI: https://doi.org/10.1007/s40313- 016-0294-7. [21] K. M. S. Benzaoui, E. Benyoussef, and A. Z. Kouache. “Three-level direct torque control based on common mode voltage reduction strategy FED Two parallel connected Five-Phase induction machine.”. Revue Roumaine DES Sciences TechniquesSerie ´ Electrotechnique et ´ Energ ´ etique ´ , 69(2):pp. 177–182, 2024. DOI: https://doi.org/10.59277/RRSTEE.2024.69.2.10. [22] M. Bermudez et al. “Open-phase fault-tolerant direct torque control technique for five-phase induction motor drives.”. IEEE Transactions on Industrial Electronics, 64(2):pp. 902–911, 2017. DOI: https://doi.org/10.1109/tie.2016.2610941. [23] O. Saadeh, M. Dalbah, and Z. Dalala. “Control of two five-phase parallel connected single source motor drives under balanced and unbalanced conditions.”. 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2018. DOI: https://doi.org/10.1109/pedg.2018.8447807. [24] A. Bıc¸ak and A. Gelen. “Sensorless Direct Torque Control based on seven-level torque hysteresis controller for five-phase IPMSM using a sliding-mode observer.”. Engineering Science and Technology, an International Journal, 24(5):pp. 1134–1143, 2021. DOI: https://doi.org/10.1016/j.jestch.2021.02.004. [25] M. Ghanes. “Observation et commande de la machine asynchrone sans capteur mecanique ´ .”. These ` de doctorat, 2005. [26] F. Mehazzem. “Contribution a la commande ` d’un moteur asynchrone destine´ a la traction ` electrique ´ .”. These de doctorat ` , 2010. | ||
آمار تعداد مشاهده مقاله: 30 تعداد دریافت فایل اصل مقاله: 65 |