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precision of 96.36%.

This paper proposes a novel thresholding method for oil slick detection from synthetic aperture radar (SAR)
images using modified Otsu and Bradley’s approaches. The existence of oil sources in the seas causes
hydrocarbon stains to appear on the surface of the seas and as a result, it leads to a decrease in the quality
of these waters. Oil slicks are distinguished from the sea surface through the utilization of a combined
Otsu-Bradley’s quantization technique, logical operators, and averaging the input image, while categorizing
the classes based on the geometrical, textural, and radiometric properties of the images. We aim to enhance
the identification of oil spills by utilizing remote sensing techniques, SAR satellite imagery processing,
thresholding methods, and extracting geometric and textural features. We performed the classification process
several times, and KNN classification method revealed an accuracy of 94.9%. Furthermore, KNN achieved a
precision of 92.4%, so we repeated the classification using two selected features, area and entropy to reach a
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Nomenclature

Convolutional blind denoising network CBD-Net
Convolutional neural network CNN
K-nearest neighbors KNN
Mean squared error MSE
Orientation-shared convolutional network OSC-Net
Peak signal to noise ratio PSNR
Radial basis function support vector machine RBF-SVM
Synthetic aperture radar SAR
Structural similarity index SSIM

1. Introduction

With the rapid growth of the economy in the world, the
extraction of oil resources and maritime transportation have
intensified, and in proportion to this progress, the amount
of unwanted oil spills into the sea has increased. Therefore,
to reduce environmental risks, it is necessary to consider

a suitable way to identify the contaminated area and the
amount of contamination with the leaked oil substance. Ob-
taining this information from the contaminated area is very
important for countermeasures to remove the contamination
[1].

When an oil spill occurs, the location and extent of the oil
spill must be determined. With timely knowledge of the
location of the oil spill and the direction of its movement,
planned actions can be taken to reduce its effects on the
environment. In this regard, remote sensing data play a very
important role by providing information about the amount
and direction of oil slick movement in predicting the move-
ment of oil slicks as well as supporting oil slick control and
cleanup operation [2].

One of the important sources of pollution are oil rigs, espe-
cially when an accident occurs in them, it causes a lot of
environmental and economic damage. The harmful effects
of marine pollution are numerous, in addition to economic
losses, it leads to global climate change and damage to
aquatic ecosystems. Considering that the sea is a valuable
platform for oil reserves and the place of oil extraction and
the traffic of carrier ships, it is necessary to quickly identify
oil spots in order to prevent oil spills and reduce its destruc-
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tive effects on marine ecosystems. The large size of the
water areas has made continuous monitoring of oil spills on
them by conventional methods such as on-site ship visits
expensive, time-consuming and practically difficult.
Recent advances in remote sensing technology have made
it a suitable alternative to traditional oil spill detection and
analysis methods. Wide coverage of areas, high time fre-
quency, digital data structure, types of sensors with high
variety of information are among the reasons for using re-
mote sensing in oil spill monitoring. SAR sensors are highly
sought after for their ability to capture images at any time
of the day or night, perform in any weather conditions, and
capture high-resolution images of large areas. However,
the presence of speckle noise in SAR images makes their
segmentation process difficult [3]. When oil spreads on the
sea surface, it causes the capillary waves of the sea to be
damped and the sea surface to be smooth, and the received
reflected waves are reduced, and less energy reaches the
sensor. In this case, these areas are seen as dark spots in
radar images [4]. These reflected sea surface waves have
constructive and destructive interference that appears as
speckle noise in SAR images [5].

In addition to oil slicks, low wind areas or convective cells
or rain cells are also seen in dark form in radar images
[6]. Oil spill detection includes three main steps: dark spot
extraction, feature selection, and classification. The detec-
tion of dark regions is a long step, and the overall accuracy
strongly depends on this step and has a great influence on
the accuracy of the next two steps. Since the ability to detect
oil spills and the like is an important point, in the next step,
a suitable feature vector must be selected to separate areas
contaminated by oil spills and the like to be used as the
input vector of the classification stage [7].

Traditional segmentation methods use texture and geomet-
ric features to segment images regionally. Recent studies
have focused on oil slick detection using deep neural net-
works. The article [8] introduces the convolutional blind
denoising network (CBD-Net), an end-to-end convolutional
neural network designed for detecting oil fields on surface
SAR images. The CBD-Net utilizes multi-purpose fea-
tures to accurately segment fine-grained oil spills, even in
cases where the target class is not clearly distinguishable
from the background in SAR images. Experimental results
demonstrate that CBD-Net outperforms other models in
extracting oil spill areas from complex images, particularly
in dark spots and complex scenes. In another study [9], the
orientation-shared convolutional network (OSCNet), a neu-
ral convolutional neural network, is used to detect oil spills
in SAR images which consists of 16-VG layers and it has
been trained on a dataset of dark areas. The OSCNet shows
improved performance compared to methods using manual
features, showcasing its ability for oil slick detection.

A two-stage point convolutional neural network for detect-
ing ships and oil slicks in SLAR images is presented in
article [10]. The architecture includes three pairs of convo-
lutional neural networks (CNNs) trained to recognize ships,
oil, and beaches. After classification, a morphological ex-
pansion filter is applied to remove small dark areas.
Clustering algorithms, logistic regression, and convolutional
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neural networks are combined in [11] to detect marine oil
spills. A cross neural network is integrated into a decision
support system to speed up analysis and diagnosis. Ad-
ditionally, a two-stage deep environment for detecting oil
occurrences is introduced in article [12], which involves
classifying dark spots based on oil spill percentages and
using U-Net to accurately identify and classify oil slicks.
Recently [13] presents a method for detecting oil spills in
PolSAR images using deep multi-layer features with CNN.
The PolSAR data is converted into a 9-channel block for
input into the CNN, which automatically extracts high-level
features. These features are further reduced using principal
component analysis (PCA) and fed into a radial basis func-
tion support vector machine (RBF-SVM) for classification.
Three fully polarized SAR datasets are used for training and
evaluation.

Our proposed method incorporates the advantages of Otsu’s
and Bradley’s thresholding techniques with additional fea-
tures. Otsu’s method maximizes the between-class variance
of pixel intensities to find an optimal threshold for separat-
ing oil spill pixels from the background. We apply Otsu’s
thresholding to the SAR images to identify potential oil
spill regions. Bradley’s method adapts the threshold lo-
cally based on a pixel’s neighborhood, addressing uneven
illumination and varying oil slick sizes. We use Bradley’s
thresholding to refine the initial oil spill detection.
Furthermore, the geometrical features (such as area, perime-
ter, and compactness) and textural features (such as entropy
and contrast) have been extracted from the detected oil spill
regions. These features provide additional discriminative
information for accurate segmentation.

The rest of the paper is organized as follows. The problem
has been stated in section 2. The proposed method which
includes dark spot detection based on Otsu-Bradley’s thresh-
olding is presented in section 3. Evaluation, dataset and
simulation results include the feature extraction, classifica-
tion, and experimental results, are given in sections 4 and 5.
The paper is concluded in section 6.

2. Oil slicks detection problem in SAR satellite
images

Oil spills result from accidents involving oil tankers,
pipelines, and other sources. These spills can harm ma-
rine ecosystems, aquatic organisms, and bird species. SAR
sensors, deployed on satellites or planes, capture reflected
radio waves from various surfaces, including ships, sea,
land, and oil spills. However, distinguishing between oil
slicks and look-alikes (such as grease ice or sea waves) in
SAR images remains challenging due to their similar dark
dot appearance. For image segmentation, thresholding can
be used as an effective tool to separate the object from the
background when the gray levels between them are sig-
nificantly different. In general, in image thresholding, a
threshold value is specified for the pixels of the image, and
this threshold level can be a global threshold level for all
pixels, or a separate threshold level for each pixel. Thresh-
olding is used as a method to select the desired areas of the
image, and remove the areas that are not important.
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2.1 Otsu’s method

Consider that the pixels in a given image be indicated in L
gray levels (1,2,...,L). Let n; explain the number of pixels
at level 7, and N explain the general number of pixels N =
Zé:] n;, the probability of occurrence of level i is given by
pi = n;/N. Let an image with threshold T be divided into
two classes Cy and Cj. Cy contains of pixels with levels
[1,...,T] and C| contains of pixels with levels [T + 1,...,L].
w; and @, explain the cumulative probabilities, o and
explain the mean levels, respectively. These amounts are
given by [14],

o1 =Y pi (1)
i=1
L
w0 = Z Di 2)
i=1+1
- Z?:] ipi
My = o 3)
ZiL:tJrl ipi
— Lzl 1Pi 4
12%) . “)

ur, Gf explain the mean level of the image and the between-
class variance, respectively,

L
ur =Y iP )
i=1

oy = oy (U — uT)* + (i — uT)? (6)

The threshold provided by Otsu’s method for binary images
is the maximum between-class variance [8],

T =argmax{cZ(T)}, 1<T <L (7

Otsu’s thresholding works well when the pixels of the image
generally consist of two brightness groups, in other words,
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this method works well when the histogram of the image
contains two peaks. When the background of the input
image is not uniform, choosing a global threshold limit it
will not be possible for all pixels of the image, because in
this case, the selected threshold limit may be suitable for
one area of the image and not for another.

As a result, not all image pixels are correctly converted to
binary. Increasing the pixel intensity difference between the
dark areas of the image and the bright areas of the image
improves the thresholding performance of Otsu’s. For this
purpose, the intensity of each pixel of the input image is
multiplied by 2, then it is considered as input data. Fig. 1
shows an example in this case.

2.2 Bradley’s method

Bradley’s method takes help from neighboring pixels in all
directions to determine the threshold limit of each pixel [9].
In such a way that initially a number of neighboring pixels
in a selection window and then the average value of the
brightness intensity of the neighboring pixels is calculated,
which is used as the threshold limit of the desired pixel. The
average calculation is done using the integral image.
Calculating the sum of pixel values in an image using inte-
gral image is a quick and efficient method. In most instances
in image processing, the image integral is utilized to deter-
mine the average brightness of the image.

The image integral leads to a significant decrease in the
amount of computational operations, resulting in a substan-
tial reduction in execution time. The sum of a pixel and its
adjacent pixels above and to the left equals the integral of
the desired pixel in the image. Then the comparison oper-
ation is performed. According to the fact that the desired
pixel is T percent lower than the average of the neighboring,
pixels to black, otherwise the face turns white. To calculate
the average of the desired pixel in the neighborhood (3 x 3)
from the integral image, the highlighted neighboring pixels

f

Figure 1. (a) Input image, (b) histogram, (c) Otsu’s thresholding, (d) input enhancement, (e) enhanced histogram, (f) Otsu’s thresholding.
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are used [15].

Mzé{[(x—kl,y—kl)—(x—2,y+1)]—[(x+1,y—2)—

(x—2,y-2)]}
(8)
1, p(n)>M(1%T
p(n) = 0T 9
0, pn)<M 100

where p(n) is the brightness of the nth pixel, T is the se-
lected percentage value and M is the average pixel (x,y)
of the selected neighbors, according to the below matrix.
Choosing the right 7 value in Bradley’s thresholding is
crucial as it significantly affects the outcome of the thresh-
olding process. In this study, we evaluated the range of
15 < T < 30. For each T value, we computed the PSNR of
the oil data thresholded output images and the image mask
using specific criteria. The Bradley method showed the
most effective scaling performance, with the highest PSNR
achieved at 7 = 23.

H x—2,y—2 ‘ x—2,y—1 ‘ x—2,y ‘ x—2,y+1 ‘ x—2,y+2 ‘

‘ x—1,y=2 ‘ x—1,y—1 ‘ x—1,y ‘ x—1,y+1 ‘ x—1,y+2 ‘

‘ x,y—2 ‘ x,y—1 ‘ X,y ‘ x,y+1 ‘ x,y+2 ‘

H x+1,y—2 ‘ x+1,y—1 ‘ x+1,y ‘ x+1,y+1 ‘ x+1,y+2 ‘

‘ x+2,y—2 ‘ x+2,y—1 ‘ x+2,y ‘ x+2,y+1 ‘ x+2,y+2 ‘

3. Proposed Otsu-Bradley’s thresholding

A binary image consists of pixels of ones and zeros. These
one and zero pixels can be imagined as false and true. By
clarifying this concept, we can apply logical operations on
binary images. Logical operations compare two input pix-
els from two binary images with the same size and then
produce an output image with the same size as output. In
addition, we can develop logical operations to process black
and white images. Table 1 shows the correctness of the
logical operator on the data.

Table 1. The logical operator OR and AND [16].

A B A&&B A|B
False False False False
False  True False True
True  False False True
True True True True

We can imagine the performance of Otsu’s and Bradley’s
thresholding methods on oil slick images in three ways.
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Images that Otsu’s method can threshold well, images that
Bradley’s method performed better, or images that both
methods provided acceptable performance.

According to the simulations on the SAR oil slick data,
the images in which the oil slick is spread and not in the
form of a line, and a large area of the image is made up
of dark pixels of the oil slick, the performance of Otsu’s
method is better, because in this case, the contrast of the
image between the oil slick and the sea surface increases,
but Bradley’s method does not perform well because this
method is measured relative to the neighboring pixels, and
many interior points of the oil slick are not detected. In this
case, it is better to select all pixels detected by both methods
as oil slick pixels.

In this type of images, because the number of dark oil pixels
is large, the average of the whole image is low, and the pixel
selected by the Otsu’s method for thresholding, because it is
calculated according to the probability of each class, is less
than the average of the whole image. In the images where
the oil slick is in the form of a line and part of the back-
ground of the image is dark, Otsu’s method is not able to
threshold, because the dark part of the image is also identi-
fied as an oil slick, but Bradley’s method is able to threshold
better. In this case, it is better to select the common points
identified in both methods as oil slick pixels. For images
where the oil slick is linear and the image background is
bright, both methods provide acceptable performance. The
proposed flowchart, which is a combination of two thresh-
olding methods, Otsu and Bradley, is shown in Fig. 2 where,
M = mean of the input image

A = Image thresholded by Otsu’s method

B = Image thresholded by Bradley’s method (7T = 23)
C=A-B

D = pixels obtained by Otsu’s method for thresholding.
The proposed flowchart is created by examining the geomet-
ric and textural aspects of the input images, and is developed
by consolidating the outcomes of algorithmic tests based on
the flowchart. In this research, the goal is to attain maximum
accuracy by following a suggested flowchart to minimize
speckle noise. A 5 x 5 median filter is applied, and the
filtered information is quantified using Otsu and Bradley
techniques. We also compute the mean of the input image
and the pixel chosen as the threshold using the Otsu tech-
nique. If the mean of the input image was lower than the
pixel value, we combine the thresholded output images of
Otsu and Bradley using the logical operator “OR”, while the
results are combined using the logical operator “AND” if it
was higher. There are only a small number of images where
both techniques can detect oil stains completely, with each
technique only detecting a portion of the oil stains. To fully
identify objects in these images, we apply the Bradley Otsu
and “OR” image outputs and take the difference between
them.

4. Assessment criterions

The main types of slicks that often appear in SAR images
are reported in the following [17]:

Natural biogenic slicks: These are surface films formed by
volume scattering decay in a rain system, also creating a low
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Input image

Using median filter (5=3) to adiwst speckle

Thresholding using Otsu and Bradley method

k

output = (AIB)-C

l

output = AREB

Using the closing morphological
aperation with radius one

Figure 2. Proposed flowchart of the proposed Otsu-Bradley’s thresholding.

backscattering region. This is problematic in higher marine
organisms. This category is the most complex oil spill to
look like, as the radar signatures of biogenic spills can be
quite similar to mineral oil films. Since the only oil spills
considered in this paper are anthropogenic spills, naturally
occurring biogenic spills are grouped as similarity.

Low wind zones: The roughness of the sea surface depends
on the wind speed and the change in the wind speed changes
the capillary waves of the sea. Low wind speed (wind speed
less than 3 m/s) creates a low backscatter region. Which
causes dark spots similar to oil slicks.

Rain effects: Rain cells dampen capillary waves when they
hit the sea surface. As a result, spots similar to oil slicks
appear in the radar images in rainy areas.

Sea ice: Sea ice is defined as frozen ocean water that can
be growing or melting. So the SAR scatter of sea ice de-
pends primarily on the type of ice and therefore can be
quite diverse due to the wide range of ice types. Sea ice
texture in SAR images is relatively complex. They can be
roughly characterized by blurred shapes, three-dimensional
structure, sharp fractures and high contrast (dark and bright
points).

Micro convective cells: The local temperature difference
between the air and the sea causes intense vertical exchange
of heat. The upper/lower air creates a cell shape that results
in a horizontal change in sea surface wind speed. This wind
variability modulates the centimeter-scale waves and thus
the capillary waves of the sea. Therefore, cellular patterns
are usually visible in SAR images.

To evaluate the function of the proposed algorithm, three
common metrics including PSNR, SSIM, and MSE are used
for all thresholding results. These three criteria are defined
as follow [18].

Peak Signal to Noise Ratio (PSNR):

PSNR calculates the maximum signal-to-noise ratio in deci-
bels, between two images. This ratio is used as a qual-

ity measure between the image thresholded and the image

mask.
2552

=1010g10 MSE (10)

Mean Squared Error (MSE):

MSE is a metric for assessing the quality and discrepancy
between the original image and a distorted (reconstructed
or compressed) image.

1 m—1n—1

MSE = m Z Z(f(lvj) _h(iaj))z

i=0 j=0

Y

where M and N represent the number of rows and columns
in the image matrix respectively. f(i,j) and h(i, j) rep-
resent the gray level of the original image and the image
thresholded in the ith row and jth column respectively.

Structural Similarity Index (SSIM):

It calculates the similarity between the image thresholded
and the image mask by measuring the three criteria of bright-
ness, contrast and structural similarity.

muuy+cl)“<ZQﬂw+(b>ﬁ<<ay+a
H)%—F,LL);—FC] G)%-i-Gyz—FCz oxoy +C3
(12)

SSIM (

where [y and Uy represent the average intensity of the mask
image and image thresholded respectively. ox and oy are
the standard deviation of the mask image and the image
thresholded respectively. oxy represents the covariance be-
tween the mask image and the thresholded image. C;, C;
and C3 are some constants and ¢, f3, y are weights which
usually equal to 1.

To check the performance of the proposed algorithm, we
evaluated the three criteria PSNR, MSE and SSIM on 206
oil slick data. Fig. 3 shows the results of this evaluation.
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Figure 3. Quality assessment based on different criterions: PSNR (scalar), SSIM, MSE (normalized).

We used 300 dataset images, 206 oil spills and 94 look-
alikes images with resolution 256 x 256 pixels. Based on
the results from Fig. 3, the mentioned algorithm achieved
higher PSNR and SSIM values compared to the two other
methods, while demonstrating lower MSE. Additionally,
the findings indicate that Otsu’s enhanced technique outper-
forms Bradley’s method in distinguishing the oil slick from
the sea surface.

In Fig. 4, our algorithm successfully distinguished the oil
data from the sea surface, each collected from different
satellites with varying geometric and textural features.

4.1 Spot features selection

The features commonly used to detect oil slicks can be
broadly classified into three main categories, characteristics
related to the geometric features of oil slicks (e.g., perime-

ter, area), characteristics related to the physical behavior of
oil slicks (e.g., mean, variance), and the characteristics of
the reference to the oil slicks in the image (e.g., Distance
from land and oil platform, etc.). The following features
used are listed as [19]:

Entropy: The entropy property determines the uniformity
of the intensity of the image pixels. Images that have uni-
form brightness, they have more entropy. The lowest en-
tropy value is when all the pixels of the image have the
same light intensity. The entropy of an image is defined
(12) as follows:

H=-YY pli,j)logp(i.j) (13)
ij

where p(i, j) is the probability of occurrence of intensity in
position (i, j).

Figure 4. (a) Input image, (b) Image mask (c) Image thresholded by the proposed method.
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Correlation: The correlation index (p) is the degree of
dependence of the gray level of a pixel on the values of its
neighbors in the whole image. The Correlation feature of
an image is defined (13) as follows:

_ (i— ux)(J— My) i
P—;;—G ——pli.J)

X O]

(14)

Sum of squares variance: Variance is a measure of the
dispersion of a set of pixels. The variance shows the dis-
persion of the gray levels of the image relative to the mean.
The sum of squares variance of an image is defined (14) as
follows:

Variance = ZZ(Z(#/) — Z(,‘,j))zp(Z(,'J)) (15)
ij

Homogeneity: Homogeneity in the image indicates the
level of uniformity of the gray levels in the neighborhood of
the desired pixel. The homogeneity of an image is defined
(15) as follows:

. p(i,j)
Homogeneity = ZZ — (16)
T 1+ (l - J)

Contrast: Contrast is a measurement of the intensity of
one pixel and its neighbor on the image. It also determines
the amount of local changes in the image, a high contrast
photo shows a wide range of dark and light pixels. The
texture is more visible in these images. In binary images,
high contrast makes the lines bold and reduces details. The
contrast of an image is defined (16) as follows:

Contras = ZZ(I — j)*pli, ) (a7
i

5. Results and experiments on real detaset

As mentioned before, in this study, about 206 oil spills and
94 look-alikes images (256 x 256 pixels) were considered
to evaluate the proposed method with the different condi-
tions of resolution, homogeneity, and boundaries quality as
shown in Table 2. These datasets contained several images
taken by the Envisat, ERS-1/2, RADARSAT-1, TerraSAR-
X, Sentinel-1. Some phenomena such as oily ice or con-
vective cells and biological stains create dark spots like oil
stains in radar images where it is crucial to choose features
that separate oil stains from non-oil stains. Sine these phe-
nomena have different textural and geometrical features.
The evaluation images include 206 images of oil slicks and
sea surface and 94 images of similar phenomena and sea
surface, where the sea surface and similar phenomena are
placed in the non-oil class. Fig. 5 shows the result of the
classification of two oil and non-oil classes resulting from
the proposed thresholding of the two methods of Otsu and
Bradley and the use of selected features.

This evaluation was done using KNN classification and 80%
of the data was for training and 20% for testing. According
to the obtained results, different classifications have been
able to separate two classes of oil and non-oil stains with
high accuracy, which indicates that the proposed method
has been able to extract dark areas from radar images well,
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Table 2. Types of satellites used in the dataset.

Satellite Polarization Band
Envisat ASAR W C
ERS-1/2 SAR w
RADARSAT-1  SAR HH C
TerraSAR-X SAR HH X
Sentinel-1A SAR HH/HV C
UAVSAR SAR  Quad-polarization L

which increases Accuracy is graded. The method proposed
in this article was able to achieve an accuracy of 94.9% with
one misidentifications of oil slicks and five misidentifica-
tions of non-oil slicks.

Furthermore, that the proposed method does not depend on
a specific classification, we repeated the simulation using
different classifications and the results can be seen in Ta-
ble 3.

Similar phenomena that are included in the non-oil category
have different geometric and textural characteristics, which
reduces the accuracy obtained. To improve the identification
of oil stains, the selected features can be limited and consid-
ered two by two, in addition to reducing the processing time
and extraction of oil stains, it improves the classification
performance. Table 4 shows the results of this evaluation.
According to the results, the use of two features, area and
entropy, improves the precision to 96.36%, as demonstrated
in Fig. 6.

k-nearsst neighbour claszifisar
(find k, build classifier)

61 5 214
511% 43% 14%
S
2 1 5
i 0.9% 417% 2
= “u
Target Claszz

Figure 5. Confusion matrix for KNN classification. 206 oil spills and 94
look-alikes images (256 x 256 pixels).
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Table 3. Comparison of measurement criteria for different classifications.

Classifier

Accuracy  Sensitivity  Precision

Decision tree classifier [20]

Discriminative restricted Boltzmann machine classifier [21]

Linear perceptron [22]
Logistic Regression [23]
Naive Bayes classifier [20]
KNN [20]

94.7 95.2 92.7
94.4 97.4 92.3
84.6 72.6 91.8
93.1 98.2 922
89.7 90.3 90.3
94.9 98.4 92.4

Table 4. Comparison of KNN classification precision for pairs of selected features in the proposed method.

Precision Entropy VAR  Area Contrast Homogeneity Correlation
Entropy - 924 9636  92.38 91.35 89.67
VAR 92.40 - 96.31 93.21 91.41 90.41
Area 96.36  96.31 - 94.89 94.03 91.53
Contrast 92.38 9320 94.89 - 92.25 90.69
Homogeneity  91.35 9141 94.03 92.25 - 74.92
Correlation 89.67 9041 91.53 90.69 74.92 -

precision="96.36
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Figure 6. Scatter diagram resulting from the comparison of entropy and
area in KNN classification resulting a precision of 96.36%.

6. Conclusion

We proposed a new thresholding method by Using a novel
Otsu-Bradley’s thresholding method which was able to
extract oil slicks with different textures and geometric
features from the images with a high PSNR average.
Appropriate features were selected that are common in
similar phenomena. SAR sensors are commonly utilized in
research because of their superior capability in detecting
oil pollution when compared to other sensors. Basically,
our method detected oil stains and it contained three
fundamental stages. The initial process involves removing
oil stains or similar occurrences from the images. During

the second stage, distinctive characteristics were identified
in order to differentiate oil stains from other similar
occurrences. In the end, during the third phase, oil stains
and similar occurrences were categorized into various
groupings. The results of different classifications show that
they are able to classify the samples correctly. The success
of the proposed Otsu-Bradley’s thresholding method can
be attributed to the combination of geometric and texture
features. By incorporating the shape-based information and
the texture-based features, this method achieves the ability
to effectively distinguish between oil slicks and other
water surface features. This claim has been investigated by
separating two by two features extracted in this research in
the form of a scatter diagram. According to the results, the
method was able to achieve an accuracy of 94.9% with one
misidentifications of oil slicks and five misidentifications
of non-oil slicks. We repeated the classification using two
features, entropy and area, which improved the precision to
96.36%.
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